No Arabic abstract
Rapid progress of quantum transport study in topological Dirac semimetal, including observations of quantum Hall effect in two-dimensional (2D) Cd$_{mathrm{3}}$As$_{mathrm{2}}$ samples, has uncovered even more interesting quantum transport properties in high-quality and three-dimensional (3D) samples. However, such 3D Cd$_{mathrm{3}}$As$_{mathrm{2}}$ films with low carrier density and high electron mobility have been hardly obtained. Here we report the growth and characterization of 3D thick Cd$_{mathrm{3}}$As$_{mathrm{2}}$ films adopting molecular beam epitaxy. The highest electron mobility ($mu$ = 3 $times$ 10$^{4}$ cm$^{2}$/Vs) among the reported film samples has been achieved at a low carrier density ($textit{n} = 5$ $times$ 10$^{16}$ cm$^{-3}$). In the magnetotransport measurement, Hall plateau-like structures are commonly observed in spite of the 3D thick films ($textit{t} = 120$ nm). On the other hand, field angle dependence of the plateau-like structures and corresponding Shubunikov-de Haas oscillations rather shows a 3D feature, suggesting the appearance of unconventional magnetic orbit, also distinct from the one described by the semiclassical Weyl-orbit equation.
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional MBE that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.
Ultrathin films of Na3Bi on insulating substrates are desired for opening a bulk band gap and generating the quantum spin Hall effect from a topological Dirac semimetal, though continuous films in the few nanometer regime have been difficult to realize. Here, we utilize alternating layer molecular beam epitaxy (MBE) to achieve uniform and continuous single crystal films of Na3Bi(0001) on insulating Al2O3(0001) substrates and demonstrate electrical transport on films with 3.8 nm thickness (4 unit cells). The high material quality is confirmed through in situ reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). In addition, these films are employed as seed layers for subsequent growth by codeposition, leading to atomic layer-by-layer growth as indicated by RHEED intensity oscillations. These material advances facilitate the pursuit of quantum phenomena in thin films of Dirac semimetals.
We report an investigation of temperature- and doping-dependent thermoelectric behaviors of topological semimetal Cd3As2. The electrical conductivity, thermal conductivity, Seebeck coefficient, and figure of merit (ZT) are calculated by using Boltzmann transport theory. The calculated thermoelectric properties of the pristine Cd3As2 match well the experimental results. The electron or hole doping, especially the latter, is found improving much the thermoelectric behaviors of the material. The optimum merit ZT of Cd3As2 with electron doping is found to be about 0.5 at T=700 K with n=1x1020 cm-3, much larger than the maximum experimental value obtained for the pristine Cd3As2 (~0.15). For the p-type Cd3As2, the maximal value of the Seebeck coefficient as a function of temperature increases apparently with the increase of the hole doping concentration and its position shifts drastically towards the lower temperature region compared to that of the n-type Cd3As2, leading to the optimum merit ZT of about 0.5 obtained at low temperature of 500K (p=1x1020 cm-3) in the p-type Cd3As2.
Three dimensional (3D) Dirac semimetals are 3D analogue of graphene, which display Dirac points with linear dispersion in k-space, stabilized by crystal symmetry. Cd3As2 and Na3Bi were predicted to be 3D Dirac semimetals and were subsequently demonstrated by photoemission experiments. As unveiled by transport measurements, several exotic phases, such as Weyl semimetals, topological insulators, and topological superconductors, can be deduced by breaking time reversal or inversion symmetry. Here, we reported a facile and scalable chemical vapor deposition method to fabricate high-quality Dirac semimetal Cd3As2 microbelts, they have shown ultrahigh mobility up to 1.15*10^5 cm^2/V s and pronounced Shubnikov-de Haas oscillations. Such extraordinary features are attributed to the suppression of electron backscattering. This research opens a new avenue for the scalable fabrication of Cd3As2 materials towards exciting electronic applications of 3D Dirac semimetals.