Do you want to publish a course? Click here

Linear orderings of combinatorial cubes

321   0   0.0 ( 0 )
 Added by Boris Bukh
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We show that, for every linear ordering of $[2]^n$, there is a large subcube on which the ordering is lexicographic. We use this to deduce that every long sequence contains a long monotone subsequence supported on an affine cube. More generally, we prove an analogous result for linear orderings of $[k]^n$. We show that, for every such ordering, there is a large subcube on which the ordering agrees with one of approximately $frac{(k-1)!}{2(ln 2)^k}$ orderings.



rate research

Read More

An algebraic linear ordering is a component of the initial solution of a first-order recursion scheme over the continuous categorical algebra of countable linear orderings equipped with the sum operation and the constant 1. Due to a general Mezei-Wright type result, algebraic linear orderings are exactly those isomorphic to the linear ordering of the leaves of an algebraic tree. Using Courcelles characterization of algebraic trees, we obtain the fact that a linear ordering is algebraic if and only if it can be represented as the lexicographic ordering of a deterministic context-free language. When the algebraic linear ordering is a well-ordering, its order type is an algebraic ordinal. We prove that the Hausdorff rank of any scattered algebraic linear ordering is less than $omega^omega$. It follows that the algebraic ordinals are exactly those less than $omega^{omega^omega}$.
136 - T. Kotek , J.A. Makowsky 2009
We consider functions of natural numbers which allow a combinatorial interpretation as density functions (speed) of classes of relational structures, s uch as Fibonacci numbers, Bell numbers, Catalan numbers and the like. Many of these functions satisfy a linear recurrence relation over $mathbb Z$ or ${mathbb Z}_m$ and allow an interpretation as counting the number of relations satisfying a property expressible in Monadic Second Order Logic (MSOL). C. Blatter and E. Specker (1981) showed that if such a function $f$ counts the number of binary relations satisfying a property expressible in MSOL then $f$ satisfies for every $m in mathbb{N}$ a linear recurrence relation over $mathbb{Z}_m$. In this paper we give a complete characterization in terms of definability in MSOL of the combinatorial functions which satisfy a linear recurrence relation over $mathbb{Z}$, and discuss various extensions and limitations of the Specker-Blatter theorem.
109 - Xiuwen Yang , Ligong Wang 2020
The concept of energy of a signed digraph is extended to iota energy of a signed digraph. The energy of a signed digraph $S$ is defined by $E(S)=sum_{k=1}^n|text{Re}(z_k)|$, where $text{Re}(z_k)$ is the real part of eigenvalue $z_k$ and $z_k$ is the eigenvalue of the adjacency matrix of $S$ with $n$ vertices, $k=1,2,ldots,n$. Then the iota energy of $S$ is defined by $E(S)=sum_{k=1}^n|text{Im}(z_k)|$, where $text{Im}(z_k)$ is the imaginary part of eigenvalue $z_k$. In this paper, we consider a special graph class for bicyclic signed digraphs $mathcal{S}_n$ with $n$ vertices which have two vertex-disjoint signed directed even cycles. We give two iota energy orderings of bicyclic signed digraphs, one is including two positive or two negative directed even cycles, the other is including one positive and one negative directed even cycles.
264 - Thomas Bier , Imed Zaguia 2011
Let $D=(V,A)$ be an acyclic digraph. For $xin V$ define $e_{_{D}}(x)$ to be the difference of the indegree and the outdegree of $x$. An acyclic ordering of the vertices of $D$ is a one-to-one map $g: V rightarrow [1,|V|] $ that has the property that for all $x,yin V$ if $(x,y)in A$, then $g(x) < g(y)$. We prove that for every acyclic ordering $g$ of $D$ the following inequality holds: [sum_{xin V} e_{_{D}}(x)cdot g(x) ~geq~ frac{1}{2} sum_{xin V}[e_{_{D}}(x)]^2~.] The class of acyclic digraphs for which equality holds is determined as the class of comparbility digraphs of posets of order dimension two.
There is a Turing computable embedding $Phi$ of directed graphs $A$ in undirected graphs. Moreover, there is a fixed tuple of formulas that give a uniform interpretation; i.e., for all directed graphs $A$, these formulas interpret $A$ in $Phi(G)$. It follows that A is Medvedev reducible to $Phi(A)$ uniformly; i.e., there is a fixed Turing operator that serves for all $A$. We observe that there is a graph $G$ that is not Medvedev reducible to any linear ordering. Hence, $G$ is not effectively interpreted in any linear ordering. Similarly, there is a graph that is not interpreted in any linear ordering using computable $Sigma_2$ formulas. Any graph can be interpreted in a linear ordering using computable $Sigma_3$ formulas. Friedman and Stanley gave a Turing computable embedding L of directed graphs in linear orderings. We show that there is no fixed tuple of $L_{omega_1,omega}$ formulas that, for all $G$, interpret the input graph $G$ in the output linear ordering $L(G)$. Harrison-Trainor and Montalban have also shown this, by a quite different proof.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا