Do you want to publish a course? Click here

Gaussian Regularization of the Pseudospectrum and Davies Conjecture

132   0   0.0 ( 0 )
 Added by Nikhil Srivastava
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A matrix $Ainmathbb{C}^{ntimes n}$ is diagonalizable if it has a basis of linearly independent eigenvectors. Since the set of nondiagonalizable matrices has measure zero, every $Ain mathbb{C}^{ntimes n}$ is the limit of diagonalizable matrices. We prove a quantitative version of this fact conjectured by E.B. Davies: for each $deltain (0,1)$, every matrix $Ain mathbb{C}^{ntimes n}$ is at least $delta|A|$-close to one whose eigenvectors have condition number at worst $c_n/delta$, for some constants $c_n$ dependent only on $n$. Our proof uses tools from random matrix theory to show that the pseudospectrum of $A$ can be regularized with the addition of a complex Gaussian perturbation. Along the way, we explain how a variant of a theorem of Sniady implies a conjecture of Sankar, Spielman and Teng on the optimal constant for smoothed analysis of condition numbers.



rate research

Read More

We study the phase reconstruction of signals $f$ belonging to complex Gaussian shift-invariant spaces $V^infty(varphi)$ from spectrogram measurements $|mathcal{G}f(X)|$ where $mathcal{G}$ is the Gabor transform and $X subseteq mathbb{R}^2$. An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on $|f|$ result in stability estimates in the situation where one aims to reconstruct $f$ on compact intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements [Grohs, P., Liehr, L., Injectivity of Gabor phase retrieval from lattice measurements, arXiv:2008.07238] we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a non-iterative, provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $V^infty(varphi)$, such as Paley-Wiener spaces.
In this paper, we establish several results related to Crouzeixs conjecture. We show that the conjecture holds for contractions with eigenvalues that are sufficiently well-separated. This separation is measured by the so-called separation constant, which is defined in terms of the pseudohyperbolic metric. Moreover, we study general properties of related extremal functions and associated vectors. Throughout, compressions of the shift serve as illustrating examples which also allow for refined results.
Let $0<p,qleq infty$ and denote by $mathcal S_p^N$ and $mathcal S_q^N$ the corresponding Schatten classes of real $Ntimes N$ matrices. We study approximation quantities of natural identities $mathcal S_p^Nhookrightarrow mathcal S_q^N$ between Schatten classes and prove asymptotically sharp bounds up to constants only depending on $p$ and $q$, showing how approximation numbers are intimately related to the Gelfand numbers and their duals, the Kolmogorov numbers. In particular, we obtain new bounds for those sequences of $s$-numbers. Our results improve and complement bounds previously obtained by B. Carl and A. Defant [J. Approx. Theory, 88(2):228--256, 1997], Y. Gordon, H. Konig, and C. Schutt [J. Approx. Theory, 49(3):219--239, 1987], A. Hinrichs and C. Michels [Rend. Circ. Mat. Palermo (2) Suppl., (76):395--411, 2005], and A. Hinrichs, J. Prochno, and J. Vybiral [preprint, 2020]. We also treat the case of quasi-Schatten norms, which is relevant in applications such as low-rank matrix recovery.
In this paper we present results on asymptotic characteristics of multivariate function classes in the uniform norm. Our main interest is the approximation of functions with mixed smoothness parameter not larger than $1/2$. Our focus will be on the behavior of the best $m$-term trigonometric approximation as well as the decay of Kolmogorov and entropy numbers in the uniform norm. It turns out that these quantities share a few fundamental abstract properties like their behavior under real interpolation, such that they can be treated simultaneously. We start with proving estimates on finite rank convolution operators with range in a step hyperbolic cross. These results imply bounds for the corresponding function space embeddings by a well-known decomposition technique. The decay of Kolmogorov numbers have direct implications for the problem of sampling recovery in $L_2$ in situations where recent results in the literature are not applicable since the corresponding approximation numbers are not square summable.
The main purpose of our paper is a new approach to design of algorithms of Kaczmarz type in the framework of operators in Hilbert space. Our applications include a diverse list of optimization problems, new Karhunen-Lo`eve transforms, and Principal Component Analysis (PCA) for digital images. A key feature of our algorithms is our use of recursive systems of projection operators. Specifically, we apply our recursive projection algorithms for new computations of PCA probabilities and of variance data. For this we also make use of specific reproducing kernel Hilbert spaces, factorization for kernels, and finite-dimensional approximations. Our projection algorithms are designed with view to maximum likelihood solutions, minimization of cost problems, identification of principal components, and data-dimension reduction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا