Do you want to publish a course? Click here

Anomalies in the pseudogap phase of the cuprates: Competing ground states and the role of umklapp scattering

414   0   0.0 ( 0 )
 Added by Neil Robinson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the past two decades, advances in computational algorithms have revealed a curious property of the two-dimensional Hubbard model (and related theories) with hole doping: the presence of close-in-energy competing ground states that display very different physical properties. On the one hand, there is a complicated state exhibiting intertwined spin, charge, and pair density wave orders. We call this `type A. On the other hand, there is a uniform d-wave superconducting state that we denote as `type B. We advocate, with the support of both microscopic theoretical calculations and experimental data, dividing the high-temperature cuprate superconductors into two corresponding families, whose properties reflect either the type A or type B ground states at low temperatures. We review the anomalous properties of the pseudogap phase that led us to this picture, and present a modern perspective on the role that umklapp scattering plays in these phenomena in the type B materials. This reflects a consistent framework that has emerged over the last decade, in which Mott correlations at weak coupling drive the formation of the pseudogap. We discuss this development, recent theory and experiments, and open issues.



rate research

Read More

The nature of the pseudogap phase of cuprates remains a major puzzle. One of its new signatures is a large negative thermal Hall conductivity $kappa_{rm xy}$, which appears for dopings $p$ below the pseudogap critical doping $p^*$, but whose origin is as yet unknown. Because this large $kappa_{rm xy}$ is observed even in the undoped Mott insulator La$_2$CuO$_4$, it cannot come from charge carriers, these being localized at $p = 0$. Here we show that the thermal Hall conductivity of La$_2$CuO$_4$ is roughly isotropic, being nearly the same for heat transport parallel and normal to the CuO$_2$ planes, i.e. $kappa_{rm zy}(T) approx kappa_{rm xy} (T)$. This shows that the Hall response must come from phonons, these being the only heat carriers able to move as easily normal and parallel to the planes . At $p > p^*$, in both La$_{rm 1.6-x}$Nd$_{rm 0.4}$Sr$_x$CuO$_4$ and La$_{rm 1.8-x}$Eu$_{rm 0.2}$Sr$_x$CuO$_4$ with $p = 0.24$, we observe no c-axis Hall signal, i.e. $kappa_{rm zy}(T) = 0$, showing that phonons have zero Hall response outside the pseudogap phase. The phonon Hall response appears immediately below $p^* = 0.23$, as confirmed by the large $kappa_{rm zy}(T)$ signal we find in La$_{1.6-x}$Nd$_{rm 0.4}$Sr$_x$CuO$_4$ with $p = 0.21$. The microscopic mechanism by which phonons become chiral in cuprates remains to be identified. This mechanism must be intrinsic - from a coupling of phonons to their electronic environment - rather than extrinsic, from structural defects or impurities, as these are the same on both sides of $p^*$. This intrinsic phonon Hall effect provides a new window on quantum materials and it may explain the thermal Hall signal observed in other topologically nontrivial insulators.
The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the emergence of a pseudogap. This new energy scale introduces asymmetry in the quasiparticle density of states because it is associated with the antiferromagnetic Brillouin zone. By contrast, superconductivity develops on the Fermi surface and this largely restores the particle-hole symmetry for energies below the superconducting energy gap scale. In the highly underdoped regime, these two scales can be separately identified in the density of states and also partial density of states for each fixed angle in the Brillouin zone. From the total density of states, we find that the pseudogap energy scale manifests itself differently as a function of doping for positive and negative bias. Furthermore, we find evidence from recent scanning tunneling spectroscopy data for asymmetry in the positive and negative bias of the extracted $Delta(theta)$ which is in qualitative agreement with this model. Likewise, the slope of the linear low energy density of states is nearly constant in the underdoped regime while it increases significantly with overdoping in agreement with the data.
147 - M. Shi , A. Bendounan , E. Razzoli 2008
Angle-resolved photoemission on underdoped La$_{1.895}$Sr$_{0.105}$CuO$_4$ reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of the Bogoliubov dispersion in the superconducting state. We also observe that the superconducting and pseudogaps have the same d-wave form with the same amplitude. Our observations provide direct evidence for preformed Cooper pairs, implying that the pseudogap phase is a precursor to superconductivity.
318 - L. Dudy , A. Krapf , H. Dwelk 2010
We report characterization results by energy dispersive x-ray analysis and AC-susceptibility for a statistically relevant number of single layer Bi-cuprate single crystals. We show that the two structurally quite different modifications of the single-layered Bi-cuprate, namely (La,Pb=0.4)-Bi2201 and La-Bi2201, exhibit anomalies in the superconducting transition temperature at certain hole doping, e.g. at 1/8 holes per Cu. These doping values agree well with the magic doping fractions found in the temperature dependent resistance of LSCO by Komiya et al. This new set of findings suggests that all these anomalies are generic for the hole-doped high-temperature superconductors.
Cuprate high-T_c superconductors on the Mott-insulating side of optimal doping (with respect to the highest T_cs) exhibit enigmatic behavior in the non-superconducting state. Near optimal doping the transport and spectroscopic properties are unlike those of a Landau-Fermi liquid. For carrier concentrations below optimal doping a pseudogap removes quasi-particle spectral weight from parts of the Fermi surface, and causes a break-up of the Fermi surface into disconnected nodal and anti-nodal sectors. Here we show that the near-nodal excitations of underdoped cuprates obey Fermi liquid behavior. Our optical measurements reveal that the dynamical relaxation rate 1/tau(omega,T) collapses on a universal function proportional to (hbar omega)^2+(1.5 pi k_B T)^2. Hints at possible Fermi liquid behavior came from the recent discovery of quantum oscillations at low temperature and high magnetic field in underdoped YBa2Cu3O6+d and YBa2Cu4O8, from the observed T^2-dependence of the DC ({omega}=0) resistivity for both overdoped and underdoped cuprates, and from the two-fluid analysis of nuclear magnetic resonance data. However, the direct spectroscopic determination of the energy dependence of the life-time of the excitations -provided by our measurements- has been elusive up to now. This observation defies the standard lore of non-Fermi liquid physics in high T_c cuprates on the underdoped side of the phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا