Do you want to publish a course? Click here

Nanoscale Quantum Optics

86   0   0.0 ( 0 )
 Added by Mario Agio
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanoscale quantum optics explores quantum phenomena in nanophotonics systems for advancing fundamental knowledge in nano and quantum optics and for harnessing the laws of quantum physics in the development of new photonics-based technologies. Here, we review recent progress in the field with emphasis on four main research areas: Generation, detection, manipulation and storage of quantum states of light at the nanoscale, Nonlinearities and ultrafast processes in nanostructured media, Nanoscale quantum coherence, Cooperative effects, correlations and many-body physics tailored by strongly confined optical fields. The focus is both on basic developments and technological implications, especially for what concerns information and communication technology, sensing and metrology, and energy efficiency.



rate research

Read More

We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime-broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by $18 pm 1%$ on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.
Local control of the generation and interaction of indistinguishable single photons is a key requirement for photonic quantum networks. Waveguide-based architectures, in which embedded quantum emitters act as both highly coherent single photon sources and as nonlinear elements to mediate photon-photon interactions, offer a scalable route to such networks. However, local electrical control of a quantum optical nonlinearity has yet to be demonstrated in a waveguide geometry. Here, we demonstrate local electrical tuning and switching of single photon generation and nonlinear interaction by embedding a quantum dot in a nano-photonic waveguide with enhanced light-matter interaction. A power-dependent transmission extinction as large as 40$pm$2% and clear, voltage-controlled bunching in the photon statistics of the transmitted light demonstrate the single photon character of the nonlinearity. The deterministic nature of the nonlinearity is particularly attractive for the future realization of photonic gates for scalable nano-photonic waveguide-based quantum information processing.
Conversion between signals in the microwave and optical domains is of great interest both for classical telecommunication, as well as for connecting future superconducting quantum computers into a global quantum network. For quantum applications, the conversion has to be both efficient, as well as operate in a regime of minimal added classical noise. While efficient conversion has been demonstrated using mechanical transducers, they have so far all operated with a substantial thermal noise background. Here, we overcome this limitation and demonstrate coherent conversion between GHz microwave signals and the optical telecom band with a thermal background of less than one phonon. We use an integrated, on-chip electro-opto-mechanical device that couples surface acoustic waves driven by a resonant microwave signal to an optomechanical crystal featuring a 2.7 GHz mechanical mode. We initialize the mechanical mode in its quantum groundstate, which allows us to perform the transduction process with minimal added thermal noise, while maintaining an optomechanical cooperativity >1, so that microwave photons mapped into the mechanical resonator are effectively upconverted to the optical domain. We further verify the preservation of the coherence of the microwave signal throughout the transduction process.
235 - Lee C. Bassett 2019
Defects in solids are in many ways analogous to trapped atoms or molecules. They can serve as long-lived quantum memories and efficient light-matter interfaces. As such, they are leading building blocks for long-distance quantum networks and distributed quantum computers. This chapter describes the quantum-mechanical coupling between atom-like spin states and light, using the diamond nitrogen-vacancy (NV) center as a paradigm. We present an overview of the NV centers electronic structure, derive a general picture of coherent light-matter interactions, and describe several methods that can be used to achieve all-optical initialization, quantum-coherent control, and readout of solid-state spins. These techniques can be readily generalized to other defect systems, and they serve as the basis for advanced protocols at the heart of many emerging quantum technologies.
Owing to the ubiquity of synchronization in the classical world, it is interesting to study its behavior in quantum systems. Though quantum synchronisation has been investigated in many systems, a clear connection to quantum technology applications is lacking. We bridge this gap and show that nanoscale heat engines are a natural platform to study quantum synchronization and always possess a stable limit cycle. Furthermore, we demonstrate an intimate relationship between the power of a heat engine and its phase-locking properties by proving that synchronization places an upper bound on the achievable steady-state power of the engine. Finally, we show that the efficiency of the engine sets a point in terms of the bath temperatures where synchronization vanishes. We link the physical phenomenon of synchronization with the emerging field of quantum thermodynamics by establishing quantum synchronization as a mechanism of stable phase coherence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا