No Arabic abstract
An explicit martingale representation for random variables described as a functional of a Levy process will be given. The Clark-Ocone theorem shows that integrands appeared in a martingale representation are given by conditional expectations of Malliavin derivatives. Our goal is to extend it to random variables which are not Malliavin differentiable. To this end, we make use of Itos formula, instead of Malliavin calculus. As an application to mathematical finance, we shall give an explicit representation of locally risk-minimizing strategy of digital options for exponential Levy models. Since the payoff of digital options is described by an indicator function, we also discuss the Malliavin differentiability of indicator functions with respect to Levy processes.
In this paper, we construct a Malliavin derivative for functionals of square-integrable Levy processes and derive a Clark-Ocone formula. The Malliavin derivative is defined via chaos expansions involving stochastic integrals with respect to Brownian motion and Poisson random measure. As an illustration, we compute the explicit martingale representation for the maximum of a Levy process.
The objective is to provide an Al`os type decomposition formula of call option prices for the Barndorff-Nielsen and Shephard model: an Ornstein-Uhlenbeck type stochastic volatility model driven by a subordinator without drift. Al`os (2012) introduced a decomposition expression for the Heston model by using Itos formula. In this paper, we extend it to the Barndorff-Nielsen and Shephard model. As far as we know, this is the first result on the Al`os type decomposition formula for models with infinite active jumps.
Duality plays an important role in population genetics. It can relate results from forwards-in-time models of allele frequency evolution with those of backwards-in-time genealogical models; a well known example is the duality between the Wright-Fisher diffusion for genetic drift and its genealogical counterpart, the coalescent. There have been a number of articles extending this relationship to include other evolutionary processes such as mutation and selection, but little has been explored for models also incorporating crossover recombination. Here, we derive from first principles a new genealogical process which is dual to a Wright-Fisher diffusion model of drift, mutation, and recombination. Our approach is based on expressing a putative duality relationship between two models via their infinitesimal generators, and then seeking an appropriate test function to ensure the validity of the duality equation. This approach is quite general, and we use it to find dualities for several important variants, including both a discrete L-locus model of a gene and a continuous model in which mutation and recombination events are scattered along the gene according to continuous distributions. As an application of our results, we derive a series expansion for the transition function of the diffusion. Finally, we study in further detail the case in which mutation is absent. Then the dual process describes the dispersal of ancestral genetic material across the ancestors of a sample. The stationary distribution of this process is of particular interest; we show how duality relates this distribution to haplotype fixation probabilities. We develop an efficient method for computing such probabilities in multilocus models.
We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump type models have already been suggested, but none is suited to develop numerical methods of the values of strategies for any given time up to the maturity. In this paper, we aim to derive a new explicit closed-form representation, which enables us to develop an efficient numerical method using the fast Fourier transforms. Note that our representation is described in terms of Malliavin derivatives. In addition, we illustrate numerical results for exponential Levy models.
Replacing Black-Scholes driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the financial market. We present the development, testing, and implementation of a simplified alternative to using fractional Brownian motion for pricing derivatives. By relaxing the assumption of past independence of Brownian motion but retaining the Markovian property, we are developing a competing model that retains the mathematical simplicity of the standard Black-Scholes model but also has the improved accuracy of allowing for past dependence. This is achieved by replacing Black-Scholes underlying process, Brownian motion, with a particular Gaussian Markov process, proposed by Vladimir Dobri{c} and Francisco Ojeda.