Do you want to publish a course? Click here

The invisibility via anomalous localized resonance of a source for electromagnetic waves

62   0   0.0 ( 0 )
 Added by Hoai Minh Nguyen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the invisibility via anomalous localized resonance of a general source for electromagnetic waves in the setting of doubly complementary media. As a result, we show that cloaking is achieved if the power is blown up. We also reveal a critical length for the invisibility of a source that occurs when the plasmonic structure is complementary to an annulus of constant, isotropic medium.



rate research

Read More

A body of literature has developed concerning cloaking by anomalous localized resonance. The mathematical heart of the matter involves the behavior of a divergence-form elliptic equation in the plane, $ ablacdot (a(x) abla u(x)) = f(x)$. The complex-valued coefficient has a matrix-shell-core geometry, with real part equal to 1 in the matrix and the core, and -1 in the shell; one is interested in understanding the resonant behavior of the solution as the imaginary part of $a(x)$ decreases to zero (so that ellipticity is lost). Most analytical work in this area has relied on separation of variables, and has therefore been restricted to radial geometries. We introduce a new approach based on a pair of dual variational principles, and apply it to some non-radial examples. In our examples, as in the radial setting, the spatial location of the source $f$ plays a crucial role in determining whether or not resonance occurs.
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks to a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
We consider dispersion generalized nonlinear Schrodinger equations (NLS) of the form $i partial_t u = P(D) u - |u|^{2 sigma} u$, where $P(D)$ denotes a (pseudo)-differential operator of arbitrary order. As a main result, we prove symmetry results for traveling solitary waves in the case of powers $sigma in mathbb{N}$. The arguments are based on Steiner type rearrangements in Fourier space. Our results apply to a broad class of NLS-type equations such as fourth-order (biharmonic) NLS, fractional NLS, square-root Klein-Gordon and half-wave equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا