No Arabic abstract
Motivated by the evidence that real-world networks evolve in time and may exhibit non-stationary features, we propose an extension of the Exponential Random Graph Models (ERGMs) accommodating the time variation of network parameters. Within the ERGM framework, a network realization is sampled from a static probability distribution defined parametrically in terms of network statistics. Inspired by the fast growing literature on Dynamic Conditional Score-driven models, in our approach, each parameter evolves according to an updating rule driven by the score of the conditional distribution. We demonstrate the flexibility of the score-driven ERGMs, both as data generating processes and as filters, and we prove the advantages of the dynamic version with respect to the static one. Our method captures dynamical network dependencies, that emerge from the data, and allows for a test discriminating between static or time-varying parameters. Finally, we corroborate our findings with the application to networks from real financial and political systems exhibiting non stationary dynamics.
A general class of time-varying regression models is considered in this paper. We estimate the regression coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simultaneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for ARCH and GARCH models is studied in simulations and a few real-life applications of our study are presented through analysis of some popular financial datasets.
This paper proposes a unified approach for studying global exponential stability of a general class of switched systems described by time-varying nonlinear functional differential equations. Some new delay-independent criteria of global exponential stability are established for this class of systems under arbitrary switching which satisfies some assumptions on the average dwell time. The obtained criteria are shown to cover and improve many previously known results, including, in particular, sufficient conditions for absolute exponential stability of switched time-delay systems with sector nonlinearities. Some simple examples are given to illustrate the proposed method.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.
Ethane is the most abundant non-methane hydrocarbon in the Earths atmosphere and an important precursor of tropospheric ozone through various chemical pathways. Ethane is also an indirect greenhouse gas (global warming potential), influencing the atmospheric lifetime of methane through the consumption of the hydroxyl radical (OH). Understanding the development of trends and identifying trend reversals in atmospheric ethane is therefore crucial. Our dataset consists of four series of daily ethane columns obtained from ground-based FTIR measurements. As many other decadal time series, our data are characterized by autocorrelation, heteroskedasticity, and seasonal effects. Additionally, missing observations due to instrument failure or unfavorable measurement conditions are common in such series. The goal of this paper is therefore to analyze trends in atmospheric ethane with statistical tools that correctly address these data features. We present selected methods designed for the analysis of time trends and trend reversals. We consider bootstrap inference on broken linear trends and smoothly varying nonlinear trends. In particular, for the broken trend model, we propose a bootstrap method for inference on the break location and the corresponding changes in slope. For the smooth trend model we construct simultaneous confidence bands around the nonparametrically estimated trend. Our autoregressive wild bootstrap approach, combined with a seasonal filter, is able to handle all issues mentioned above.
Conditional heteroscedastic (CH) models are routinely used to analyze financial datasets. The classical models such as ARCH-GARCH with time-invariant coefficients are often inadequate to describe frequent changes over time due to market variability. However we can achieve significantly better insight by considering the time-varying analogues of these models. In this paper, we propose a Bayesian approach to the estimation of such models and develop computationally efficient MCMC algorithm based on Hamiltonian Monte Carlo (HMC) sampling. We also established posterior contraction rates with increasing sample size in terms of the average Hellinger metric. The performance of our method is compared with frequentist estimates and estimates from the time constant analogues. To conclude the paper we obtain time-varying parameter estimates for some popular Forex (currency conversion rate) and stock market datasets.