No Arabic abstract
Ethane is the most abundant non-methane hydrocarbon in the Earths atmosphere and an important precursor of tropospheric ozone through various chemical pathways. Ethane is also an indirect greenhouse gas (global warming potential), influencing the atmospheric lifetime of methane through the consumption of the hydroxyl radical (OH). Understanding the development of trends and identifying trend reversals in atmospheric ethane is therefore crucial. Our dataset consists of four series of daily ethane columns obtained from ground-based FTIR measurements. As many other decadal time series, our data are characterized by autocorrelation, heteroskedasticity, and seasonal effects. Additionally, missing observations due to instrument failure or unfavorable measurement conditions are common in such series. The goal of this paper is therefore to analyze trends in atmospheric ethane with statistical tools that correctly address these data features. We present selected methods designed for the analysis of time trends and trend reversals. We consider bootstrap inference on broken linear trends and smoothly varying nonlinear trends. In particular, for the broken trend model, we propose a bootstrap method for inference on the break location and the corresponding changes in slope. For the smooth trend model we construct simultaneous confidence bands around the nonparametrically estimated trend. Our autoregressive wild bootstrap approach, combined with a seasonal filter, is able to handle all issues mentioned above.
Motivated by the evidence that real-world networks evolve in time and may exhibit non-stationary features, we propose an extension of the Exponential Random Graph Models (ERGMs) accommodating the time variation of network parameters. Within the ERGM framework, a network realization is sampled from a static probability distribution defined parametrically in terms of network statistics. Inspired by the fast growing literature on Dynamic Conditional Score-driven models, in our approach, each parameter evolves according to an updating rule driven by the score of the conditional distribution. We demonstrate the flexibility of the score-driven ERGMs, both as data generating processes and as filters, and we prove the advantages of the dynamic version with respect to the static one. Our method captures dynamical network dependencies, that emerge from the data, and allows for a test discriminating between static or time-varying parameters. Finally, we corroborate our findings with the application to networks from real financial and political systems exhibiting non stationary dynamics.
Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local resolution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyper-local resolution. However, due to the low quality of the sensors and the non-laboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyper-local spatial prediction using this varying-quality noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.
Color-Magnitude Diagrams (CMDs) are plots that compare the magnitudes (luminosities) of stars in different wavelengths of light (colors). High nonlinear correlations among the mass, color, and surface temperature of newly formed stars induce a long narrow curved point cloud in a CMD known as the main sequence. Aging stars form new CMD groups of red giants and white dwarfs. The physical processes that govern this evolution can be described with mathematical models and explored using complex computer models. These calculations are designed to predict the plotted magnitudes as a function of parameters of scientific interest, such as stellar age, mass, and metallicity. Here, we describe how we use the computer models as a component of a complex likelihood function in a Bayesian analysis that requires sophisticated computing, corrects for contamination of the data by field stars, accounts for complications caused by unresolved binary-star systems, and aims to compare competing physics-based computer models of stellar evolution.
Atmospheric trace-gas inversion refers to any technique used to predict spatial and temporal fluxes using mole-fraction measurements and atmospheric simulations obtained from computer models. Studies to date are most often of a data-assimilation flavour, which implicitly consider univariate statistical models with the flux as the variate of interest. This univariate approach typically assumes that the flux field is either a spatially correlated Gaussian process or a spatially uncorrelated non-Gaussian process with prior expectation fixed using flux inventories (e.g., NAEI or EDGAR in Europe). Here, we extend this approach in three ways. First, we develop a bivariate model for the mole-fraction field and the flux field. The bivariate approach allows optimal prediction of both the flux field and the mole-fraction field, and it leads to significant computational savings over the univariate approach. Second, we employ a lognormal spatial process for the flux field that captures both the lognormal characteristics of the flux field (when appropriate) and its spatial dependence. Third, we propose a new, geostatistical approach to incorporate the flux inventories in our updates, such that the posterior spatial distribution of the flux field is predominantly data-driven. The approach is illustrated on a case study of methane (CH$_4$) emissions in the United Kingdom and Ireland.
CD8 T cells are specialized immune cells that play an important role in the regulation of antiviral immune response and the generation of protective immunity. In this paper we investigate the differentiation of memory CD8 T cells in the immune response using a short time course microarray experiment. Structurally, this experiment is similar to many in that it involves measurements taken on independent samples, in one biological group, at a small number of irregularly spaced time points, and exhibiting patterns of temporal nonstationarity. To analyze this CD8 T-cell experiment, we develop a hierarchical state space model so that we can: (1) detect temporally differentially expressed genes, (2) identify the direction of successive changes over time, and (3) assess the magnitude of successive changes over time. We incorporate hidden Markov models into our model to utilize the information embedded in the time series and set up the proposed hierarchical state space model in an empirical Bayes framework to utilize the population information from the large-scale data. Analysis of the CD8 T-cell experiment using the proposed model results in biologically meaningful findings. Temporal patterns involved in the differentiation of memory CD8 T cells are summarized separately and performance of the proposed model is illustrated in a simulation study.