Do you want to publish a course? Click here

Statistical Mesoscopic Hydro-Thermodynamics: The Description of Kinetics and Hydrodynamics of Nonequilibrium Processes in Single Liquids

102   0   0.0 ( 0 )
 Added by Cloves Rodrigues
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrodynamics, a term apparently introduced by Daniel Bernoulli (1700-1783) to comprise hydrostatic and hydraulics, has a long history with several theoretical approaches. Here, after a descriptive introduction, we present so-called mesoscopic hydro-thermodynamics, which is also referred to as higher-order generalized hydrodynamics, built within the framework of a mechanical-statistical formalism. It consists of a description of the material and heat motion of fluids in terms of the corresponding densities and their associated fluxes of all orders. In this way, movements are characterized in terms of intermediate to short wavelengths and intermediate to high frequencies. The fluxes have associated Maxwell-like times, which play an important role in determining the appropriate contraction of the description (of the enormous set of fluxes of all orders) necessary to address the characterization of the motion in each experimental setup. This study is an extension of a preliminary article: Physical Review E textbf{91}, 063011 (2015).



rate research

Read More

We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nose--Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A generalised macroscopic virial theorem ensues upon summation over all degrees of freedom. This theorem allows for the derivation of nonequilibrium state equations that involve dissipative heat flows on the same footing with state variables, as exemplified for inertial Brownian motion with solid friction and overdamped active Brownian particles subject to inhomogeneous pressure.
143 - James W. Dufty 2007
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant differences observed in real granular fluids are indeed captured by this feature. Following a brief introductory description of real granular fluids and motivation for the idealized model, the elements of nonequilibrium statistical mechanics are recalled (observables, states, and their dynamics). Peculiarities of the hard sphere interactions are developed in detail. The exact microscopic balance equations for the number, energy, and momentum densities are derived and their averages described as the origin for a possible macroscopic continuum mechanics description. This formally exact analysis leads to closed, macroscopic hydrodynamic equations through the notion of a normal state. This concept is introduced and the Navier-Stokes constitutive equations are derived, with associated Green-Kubo expressions for the transport coefficients. A parallel description of granular gases is described in the context of kinetic theory, and the Boltzmann limit is identified critically. The construction of the normal solution to the kinetic equation is outlined, and Navier-Stokes order hydrodynamic equations are re-derived for a low density granular gas.
In this paper we present a self-contained macroscopic description of diffusive systems interacting with boundary reservoirs and under the action of external fields. The approach is based on simple postulates which are suggested by a wide class of microscopic stochastic models where they are satisfied. The description however does not refer in any way to an underlying microscopic dynamics: the only input required are transport coefficients as functions of thermodynamic variables, which are experimentally accessible. The basic postulates are local equilibrium which allows a hydrodynamic description of the evolution, the Einstein relation among the transport coefficients, and a variational principle defining the out of equilibrium free energy. Associated to the variational principle there is a Hamilton-Jacobi equation satisfied by the free energy, very useful for concrete calculations. Correlations over a macroscopic scale are, in our scheme, a generic property of nonequilibrium states. Correlation functions of any order can be calculated from the free energy functional which is generically a non local functional of thermodynamic variables. Special attention is given to the notion of equilibrium state from the standpoint of nonequilibrium.
Self-supervised learning (SSL) of energy based models has an intuitive relation to equilibrium thermodynamics because the softmax layer, mapping energies to probabilities, is a Gibbs distribution. However, in what way SSL is a thermodynamic process? We show that some SSL paradigms behave as a thermodynamic composite system formed by representations and self-labels in contact with a nonequilibrium reservoir. Moreover, this system is subjected to usual thermodynamic cycles, such as adiabatic expansion and isochoric heating, resulting in a generalized Gibbs ensemble (GGE). In this picture, we show that learning is seen as a demon that operates in cycles using feedback measurements to extract negative work from the system. As applications, we examine some SSL algorithms using this idea.
284 - P. Gaspard , D. Andrieux 2014
We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا