No Arabic abstract
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant differences observed in real granular fluids are indeed captured by this feature. Following a brief introductory description of real granular fluids and motivation for the idealized model, the elements of nonequilibrium statistical mechanics are recalled (observables, states, and their dynamics). Peculiarities of the hard sphere interactions are developed in detail. The exact microscopic balance equations for the number, energy, and momentum densities are derived and their averages described as the origin for a possible macroscopic continuum mechanics description. This formally exact analysis leads to closed, macroscopic hydrodynamic equations through the notion of a normal state. This concept is introduced and the Navier-Stokes constitutive equations are derived, with associated Green-Kubo expressions for the transport coefficients. A parallel description of granular gases is described in the context of kinetic theory, and the Boltzmann limit is identified critically. The construction of the normal solution to the kinetic equation is outlined, and Navier-Stokes order hydrodynamic equations are re-derived for a low density granular gas.
The response of an isolated granular fluid to small perturbations of the hydrodynamic fields is considered. The corresponding linear response functions are identified in terms of a formal solution to the Liouville equation including the effects of the cooling reference state. These functions are evaluated exactly in the asymptotic long wavelength limit and shown to represent hydrodynamic modes. More generally, the linear granular Navier-Stokes equations for the response functions and related Langevin equations are obtained from an extension of Moris identity. The resulting Green-Kubo expressions for transport coefficients are compared and contrasted with those for a molecular fluid. Next the response functions are described in terms of an effective dynamics in the single particle phase space. A closed linear kinetic equation is obtained formally in terms of a linear two particle functional. This closure is evaluated for two examples: a short time Markovian approximation, and a low density expansion on length and time scales of the mean free time and mean free path. The former is a generalization of the revised Enskog kinetic theory to include velocity correlations. The latter is an extension of the Boltzmann equation to include the effects of recollisions (rings) among the particles.
Newton viscosity law for the momentum flux and Fouriers law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newtons viscosity law. However, theory predicts a qualitative difference for Fouriers law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.
Understanding the rich spatial and temporal structures in nonequilibrium thermal environments is a major subject of statistical mechanics. Because universal laws, based on an ensemble of systems, are mute on an individual system, exploring nonequilibrium statistical mechanics and the ensuing universality in individual systems has long been of fundamental interest. Here, by adopting the wave description of microscopic motion, and combining the recently developed eigenchannel theory and the mathematical tool of the concentration of measure, we show that in a single complex medium, a universal spatial structure - the diffusive steady state - emerges from an overwhelming number of scattering eigenstates of the wave equation. Our findings suggest a new principle, dubbed the wave thermalization, namely, a propagating wave undergoing complex scattering processes can simulate nonequilibrium thermal environments, and exhibit macroscopic nonequilibrium phenomena.
The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their local thermodynamic and transport properties are deduced from the microscopic Hamiltonian dynamics. In particular, the Green-Kubo formulas are obtained for all the transport coefficients. The eight hydrodynamic modes and their dispersion relation are studied for general and cubic crystals. In the same twenty crystallographic classes as those compatible with piezoelectricity, cross effects coupling transport between linear momentum and heat or crystalline order are shown to split the degeneracy of damping rates for modes propagating in opposite generic directions.
We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nose--Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A generalised macroscopic virial theorem ensues upon summation over all degrees of freedom. This theorem allows for the derivation of nonequilibrium state equations that involve dissipative heat flows on the same footing with state variables, as exemplified for inertial Brownian motion with solid friction and overdamped active Brownian particles subject to inhomogeneous pressure.