No Arabic abstract
We study the dependence of the observable stochastic gravitational wave background induced by a first-order phase transition on the global properties of the scalar effective potential in particle physics. The scalar potential can be that of the Standard Model Higgs field, or more generally of any scalar field responsible for a spontaneous symmetry breaking in beyond-the-Standard-Model settings thatprovide for a first-order phase transition in the early universe.Characteristics of the effective potential include the relative depth of the true minimum ($E_alpha^4$), the height of the barrier that separates it from the false one ($E_m^4$) and the separation between the two minima in field space ($v$), all at the bubble nucleation temperature. We focus on a simple yet quite general class of single-field polynomial potentials, with parameters being varied over several orders of magnitude. It is then shown that gravitational wave observatories such as aLIGO O5, BBO, DECIGO and LISA are mostly sensitive to values of these parameters in the region $E_alpha sim (0.1-10) times E_m$. Finally, relying on well-defined models and using our framework, we demonstrate how to obtain the gravitational wave spectra for potentials of various shapes without necessarily relying on dedicated software packages.
It has been suggested recently that the change in cosmological redshift (the Sandage test of expansion) could be observed in the next generation of large telescopes and ultra-stable spectrographs. In a recent paper we estimated the change of peculiar velocity, i.e. the peculiar acceleration, in nearby galaxies and clusters and shown it to be of the same order of magnitude as the typical cosmological signal. Mapping the acceleration field allows for a reconstruction of the galactic gravitational potential without assuming virialization. In this paper we focus on the peculiar acceleration in our own Galaxy, modeled as a Kuzmin disc and a dark matter spherical halo. We estimate the peculiar acceleration for all known Galactic globular clusters and find some cases with an expected velocity shift in excess of 20 cm/sec for observations fifteen years apart, well above the typical cosmological acceleration. We then compare the predicted signal for a MOND (modified Newtonian dynamics) model in which the spherical dark matter halo is absent. We find that the signal pattern is qualitatively different, showing that the peculiar acceleration field could be employed to test competing theories of gravity. However the difference seems too small to be detectable in the near future.
Upcoming searches for the stochastic background of inflationary gravitational waves (GWs) offer the exciting possibility to probe the evolution of our Universe prior to Big Bang nucleosynthesis. In this spirit, we explore the sensitivity of future GW observations to a broad class of beyond-the-Standard-Model scenarios that lead to a nonstandard expansion history. We consider a new scalar field whose coherent oscillations dominate the energy density of the Universe at very early times, resulting in a scalar era prior to the standard radiation-dominated era. The imprint of this scalar era on the primordial GW spectrum provides a means to probe well-motivated yet elusive models of particle physics. Our work highlights the complementarity of future GW observatories across the entire range of accessible frequencies.
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
We study the induced primordial gravitational waves (GW) coming from the effect of scalar perturbation on the tensor perturbation at the second order of cosmological perturbation theory. We use the evolution of the standard model degrees of freedom with respect to temperature in the early Universe to compute the induced gravitational waves bakcground. Our result shows that the spectrum of the induced GW is affected differently by the standard model degrees of freedom than the GW coming from first order tensor perturbation. This phenomenon is due to the presence of scalar perturbations as a source for tensor perturbations and it is effective around the quark gluon deconfinement and electroweak transition. In case of considering a scalar spectral index larger than one at small scales or a non-Gaussian curvature power spectrum this effect can be observed by gravitational wave observatories.
The scalar induced gravitational waves (SIGWs) is a useful tool to probe the physics in the early universe. To study inflationary models with this tool, we need to know how the waveform of SIGWs is related to the shape of the scalar power spectrum. We propose two parameterizations to approximate the scalar power spectrum with either a sharp or a broad spike at small scales, and then use these two parameterizations to study the relation between the shapes of $Omega_{GW}$ and the scalar power spectrum. We find that the waveform of SIGWs has a similar shape to the power spectrum. Away from the peak of the spike, the frequency relation $Omega_{GW}(k)sim mathcal{P}_zeta^2(k)$ holds independent of the functional form of the scalar power spectrum. We also give a physical explanation for this general relationship. The general relation is useful for determining the scalar power spectrum and probing inflationary physics with the waveform of SIGWs.