No Arabic abstract
We analyze the problem of estimating past quantum states of a monitored system from a mathematical perspective in order to ensure self-consistency with the principle of quantum non-demolition. Despite several claims of ``measuring noncommuting observables in the physics literature, we show that we are always measuring commuting processes. Our main interest is in the notion of quantum smoothing or retrodiction. In particular, we examine proposals to estimate the result of an external measurement made on an open quantum systems during a period where it is also undergoing continuous monitoring. A full analysis shows that the non-demolition principle is not actually violated, and so a well-posed as a statistical inference problem can be formulated. We extend the formalism to consider multiple independent external measurements made on the system over the course of a continual period of monitoring.
Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling we find that classical dynamics emerges only when the position and spin actions are both large compared to $hbar$. These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin 1/2 particle. When the conditions for classicallity are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value.
In a quantum system that is bounded by past and future conditions, weak continuous monitoring forward-evolving and backward-evolving quantum states are usually carried out separately. Therefore, measured signals at a given time t cannot be monitored continuously. Here, we propose an enlarged-quantum-system method to combine these two processes together. Therein, we introduce an enlarged quantum state that contains both the forward- and backward-evolving quantum states. The enlarged state is governed by an enlarged master equation and propagates one-way forward in time. As a result, the measured signals at time t can be monitored continuously and can provide advantages in the signals amplification and signal processing techniques. Our proposal can be implemented on various physical systems, such as superconducting circuits, NMR systems, ion-traps, quantum photonics, and among others.
We stand by our findings in Phys. Rev A. 96, 022126 (2017). In addition to refuting the invalid objections raised by Peleg and Vaidman, we report a retrocausation problem inherent in Vaidmans definition of the past of a quantum particle.
The non-Markovian nature of open quantum dynamics lies in the structure of the multitime correlations, which are accessible by means of interventions. Here, by examining multitime correlations, we show that it is possible to engineer non-Markovian systems with only long-term memory but seemingly no short-term memory, so that their non-Markovianity is completely non-detectable by any interventions up to an arbitrarily large time. Our results raise the question about the assessibility of non-Markovianity: in principle, non-Markovian effects that are perfectly elusive to interventions may emerge at much later times.
We consider a single copy of a quantum particle moving in a potential and show that it is possible to monitor its complete wave function by only continuously measuring its position. While we assume that the potential is known, no information is available about its state initially. In order to monitor the wave function, an estimate of the wave function is propagated due to the influence of the potential and continuously updated according to the results of the position measurement. We demonstrate by numerical simulations that the estimation reaches arbitrary values of accuracy below 100 percent within a finite time period for the potentials we study. In this way our method grants, a certain time after the beginning of the measurement, an accurate real-time record of the state evolution including the influence of the continuous measurement. Moreover, it is robust against sudden perturbations of the system as for example random momentum kicks from environmental particles, provided they occur not too frequently.