Do you want to publish a course? Click here

Rotating magnetic field driven antiferromagnetic domain wall motion: Role of Dzyaloshinskii-Moriya interaction

166   0   0.0 ( 0 )
 Added by Minghui Qin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we study the rotating magnetic field driven domain wall (DW) motion in antiferromagnetic nanowires, using the micromagnetic simulations of the classical Heisenberg spin model. We show that in low frequency region, the rotating field alone could efficiently drive the DW motion even in the absence of Dzyaloshinskii-Moriya interaction (DMI). In this case, the DW rotates synchronously with the magnetic field, and a stable precession torque is available and drives the DW motion with a steady velocity. In large frequency region, the DW only oscillates around its equilibrium position and cannot propagate. The dependences of the velocity and critical frequency differentiating the two motion modes on several parameters are investigated in details, and the direction of the DW motion can be controlled by modulating the initial phase of the field. Interestingly, a unidirectional DW motion is predicted attributing to the bulk DMI, and the nonzero velocity for high frequency is well explained. Thus, this work does provide useful information for further antiferromagnetic spintronics applications.

rate research

Read More

Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recently, a novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamic domain wall (DW) under a strong DMI and find that the DMI induces an annihilation of topological vertical Bloch lines (VBLs) by lifting the four-fold degeneracy of the VBL. As a result, velocity reduction originating from the Walker breakdown is completely suppressed, leading to a soliton-like constant velocity of the DW. Furthermore, the strength of the DMI, which is the key factor for soliton-like DW motion, can be quantified without any side effects possibly arising from current-induced torques or extrinsic pinnings in magnetic films. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.
We have studied a series of Pt/Co/M epitaxial trilayers, in which Co is sandwiched between Pt and a non magnetic layer M (Pt, Ir, Cu, Al). Using polar magneto-optical Kerr microscopy, we show that the field- induced domain wall speeds are strongly dependent on the nature of the top layer, they increase going from M=Pt to lighter top metallic overlayers, and can reach several 100 m/s for Pt/Co/Al. The DW dynamics is consistent with the presence of chiral Neel walls stabilized by interfacial Dzyaloshinskii-Moriya interaction (DMI) whose strength increases going from Pt to Al top layers. This is explained by the presence of DMI with opposite sign at the Pt/Co and Co/M interfaces, the latter increasing in strength going towards heavier atoms, possibly due to the increasing spin-orbit interaction. This work shows that in non-centrosymmetric trilayers the domain wall dynamics can be finely tuned by engineering the DMI strength, in view of efficient devices for logic and spitronics applications.
We study the magnetic properties of perpendicularly magnetised Pt/Co/Ir thin films and investigate the domain wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultra-thin films. Measurements of the Co layer thickness dependence of saturation magnetisation, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e. DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter $alpha$, we find that both $alpha$ and the velocity scaling parameter $v_{0}$ change as a function of in-plane bias field.
We present a general approach for studying the dynamics of domain walls in biaxial ferromagnetic stripes with functionally graded Dzyaloshinskii-Moriya interaction (DMI). By engineering the spatial profile of the DMI parameter we propose the concept of a diode, which implements filtering of domain walls of certain topological charge and helicity. We base our study on phenomenological Landau-Lifshitz-Gilbert equations with additional Zhang-Li spin-transfer terms using a collective variable approach. In the effective equations of motion the gradients of DMI play the role of a driving force which competes with current driving. All analytical predictions are confirmed by numerical simulations.
Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field driven magnetic domain wall motion is demonstrated for epitaxial Fe films on BaTiO$_3$ with in-plane and out-of-plane polarized domains. In this system, magnetic domain wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric field strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا