Do you want to publish a course? Click here

Flux and storage of energy in non-equilibrium, stationary states

128   0   0.0 ( 0 )
 Added by Yirui Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Systems kept out of equilibrium in stationary states by an external source of energy store an energy $Delta U=U-U_0$. $U_0$ is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine $Delta U$ for two model systems: ideal gas and Lennard-Jones fluid. $Delta U$ depends not only on the total energy flux, $J_U$, but also on the mode of energy transfer into the system. We use three different modes of energy transfer where: the energy flux per unit volume is (i) constant; (ii) proportional to the local temperature (iii) proportional to the local density. We show that $Delta U /J_U=tau$ is minimized in the stationary states formed in these systems, irrespective of the mode of energy transfer. $tau$ is the characteristic time scale of energy outflow from the system immediately after the shutdown of energy flux. We prove that $tau$ is minimized in stable states of the Rayleigh-Benard cell.



rate research

Read More

We study the structure of stationary non equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated to functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
We study a quantity $mathcal{T}$ defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium $U_0$, $Delta U=U-U_0$ divided by the heat flow $J_{U}$ going out of the system. A recent study suggests that $mathcal{T}$ is minimized in steady states (Phys.Rev.E.99, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine $mathcal{T}$ with and without constraints and find that $mathcal{T}$ is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows $U=U_0*f(J_U)$. In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.
We study periodic steady states of a lattice system under external cyclic energy supply using simulation. We consider different protocols for cyclic energy supply and examine the energy storage. Under the same energy flux, we found that the stored energy depends on the details of the supply, period and amplitude of the supply. Further, we introduce an adiabatic wall as internal constrain into the lattice and examine the stored energy with respect to different positions of the internal constrain. We found that the stored energy for constrained systems are larger than their unconstrained counterpart. We also observe that the system stores more energy through large and rare energy delivery, comparing to small and frequent delivery.
We discuss the non-equilibrium statistical mechanics of a thermally driven micromachine consisting of three spheres and two harmonic springs [Y. Hosaka et al., J. Phys. Soc. Jpn. 86, 113801 (2017)]. We obtain the non-equilibrium steady state probability distribution function of such a micromachine and calculate its probability flux in the corresponding configuration space. The resulting probability flux can be expressed in terms of a frequency matrix that is used to distinguish between a non-equilibrium steady state and a thermal equilibrium state satisfying detailed balance. The frequency matrix is shown to be proportional to the temperature difference between the spheres. We obtain a linear relation between the eigenvalue of the frequency matrix and the average velocity of a thermally driven micromachine that can undergo a directed motion in a viscous fluid. This relation is consistent with the scallop theorem for a deterministic three-sphere microswimmer.
We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا