Do you want to publish a course? Click here

A new approach of the partial control method in chaotic systems

142   0   0.0 ( 0 )
 Added by Rub\\'en Cape\\'ans
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present here a new approach of the partial control method, which is a useful control technique applied to transient chaotic dynamics affected by a bounded noise. Usually we want to avoid the escape of these chaotic transients outside a certain region $Q$ of the phase space. For that purpose, there exists a control bound such that for controls smaller than this bound trajectories are kept in a special subset of $Q$ called the safe set. The aim of this new approach is to go further, and to compute for every point of $Q$ the minimal control bound that would keep it in $Q$. This defines a special function that we call the safety function, which can provide the necessary information to compute the safe set once we choose a particular value of the control bound. This offers a generalized method where previous known cases are included, and its use encompasses more diverse scenarios.



rate research

Read More

We show that the synchronized states of two systems of identical chaotic maps subject to either, a common drive that acts with a probability p in time or to the same drive acting on a fraction p of the maps, are similar. The synchronization behavior of both systems can be inferred by considering the dynamics of a single chaotic map driven with a probability p. The synchronized states for these systems are characterized on their common space of parameters. Our results show that the presence of a common external drive for all times is not essential for reaching synchronization in a system of chaotic oscillators, nor is the simultaneous sharing of the drive by all the elements in the system. Rather, a crucial condition for achieving synchronization is the sharing of some minimal, average information by the elements in the system over long times.
We introduce a new paradigm of 2D (electromagnetic) ray-chaos, featuring both guided and scattered rays in a dielectric layer with exponentially tapered refraction index backed by an undulated conductive surface, and illustrate its relevant features. Numerical simulations of the corresponding full-wave solution indicate that the system complies with Berrys conjecture in the asymptotic short wavelength limit.
99 - Stefan Groote 2019
We explain in detail the definition, construction and generalisation of the Galois group of Chebyshev polynomials of high degree to the Galois group of chaotic chains. The calculations in this paper are performed for Chebyshev polynomials and chaotic chains of degree $N=2$. Insides into possible further steps are given.
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a thermal bath. The second is the same except for the shape of the particles, which is now square. The basic difference of these two systems lies in the interaction: hard core elastic collisions make the dynamics of the disks chaotic whereas that of squares is not. Remarkably, this difference is not reflected in the transport properties of the two systems: simulations show that the diffusion coefficients, velocity correlations and response functions of the heavy impurity are in agreement with kinetic theory for both the chaotic and the non-chaotic model. The relaxation to equilibrium, however, is very sensitive to the kind of interaction. These observations are used to reconsider and discuss some issues connected to chaos, statistical mechanics and diffusion.
This paper analyzes the security of a recent cryptosystem based on the ergodicity property of chaotic maps. It is shown how to obtain the secret key using a chosen-ciphertext attack. Some other design weaknesses are also shown.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا