Do you want to publish a course? Click here

Cryptanalysis of a new chaotic cryptosystem based on ergodicity

204   0   0.0 ( 0 )
 Added by David Arroyo
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper analyzes the security of a recent cryptosystem based on the ergodicity property of chaotic maps. It is shown how to obtain the secret key using a chosen-ciphertext attack. Some other design weaknesses are also shown.



rate research

Read More

Recently two encryption schemes were proposed by combining circular bit shift and XOR operations, under the control of a pseudorandom bit sequence (PRBS) generated from a chaotic system. This paper studies the security of these two encryption schemes and reports the following findings: 1) there exist some security defects in both schemes; 2) the underlying chaotic PRBS can be reconstructed as an equivalent key by using only two chosen plaintexts; 3) most elements in the underlying chaotic PRBS can be obtained by a differential known-plaintext attack using only two known plaintexts. Experimental results are given to demonstrate the feasibility of the proposed attack.
Chaotic systems have been broadly exploited through the last two decades to build encryption methods. Recently, two new image encryption schemes have been proposed, where the encryption process involves a permutation operation and an XOR-like transformation of the shuffled pixels, which are controlled by three chaotic systems. This paper discusses some defects of the schemes and how to break them with a chosen-plaintext attack.
This paper analyzes the security of a recently-proposed signal encryption scheme based on a filter bank. A very critical weakness of this new signal encryption procedure is exploited in order to successfully recover the associated secret key.
Recently, Pareek et al. proposed a symmetric key block cipher using multiple one-dimensional chaotic maps. This paper reports some new findings on the security problems of this kind of chaotic cipher: 1) a number of weak keys exists; 2) some important intermediate data of the cipher are not sufficiently random; 3) the whole secret key can be broken by a known-plaintext attack with only 120 consecutive known plain-bytes in one known plaintext. In addition, it is pointed out that an improved version of the chaotic cipher proposed by Wei et al. still suffers from all the same security defects.
Recently, a chaotic image encryption algorithm based on information entropy (IEAIE) was proposed. This paper scrutinizes the security properties of the algorithm and evaluates the validity of the used quantifiable security metrics. When the round number is only one, the equivalent secret key of every basic operation of IEAIE can be recovered with a differential attack separately. Some common insecurity problems in the field of chaotic image encryption are found in IEAIE, e.g. the short orbits of the digital chaotic system and the invalid sensitivity mechanism built on information entropy of the plain image. Even worse, each security metric is questionable, which undermines the security credibility of IEAIE. Hence, IEAIE can only serve as a counterexample for illustrating common pitfalls in designing secure communication method for image data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا