No Arabic abstract
For real-world speech recognition applications, noise robustness is still a challenge. In this work, we adopt the teacher-student (T/S) learning technique using a parallel clean and noisy corpus for improving automatic speech recognition (ASR) performance under multimedia noise. On top of that, we apply a logits selection method which only preserves the k highest values to prevent wrong emphasis of knowledge from the teacher and to reduce bandwidth needed for transferring data. We incorporate up to 8000 hours of untranscribed data for training and present our results on sequence trained models apart from cross entropy trained ones. The best sequence trained student model yields relative word error rate (WER) reductions of approximately 10.1%, 28.7% and 19.6% on our clean, simulated noisy and real test sets respectively comparing to a sequence trained teacher.
In this paper, we introduce the Kaizen framework that uses a continuously improving teacher to generate pseudo-labels for semi-supervised training. The proposed approach uses a teacher model which is updated as the exponential moving average of the student model parameters. This can be seen as a continuous version of the iterative pseudo-labeling approach for semi-supervised training. It is applicable for different training criteria, and in this paper we demonstrate it for frame-level hybrid hidden Markov model - deep neural network (HMM-DNN) models and sequence-level connectionist temporal classification (CTC) based models. The proposed approach shows more than 10% word error rate (WER) reduction over standard teacher-student training and more than 50% relative WER reduction over 10 hour supervised baseline when using large scale realistic unsupervised public videos in UK English and Italian languages.
We present a method for continual learning of speech representations for multiple languages using self-supervised learning (SSL) and applying these for automatic speech recognition. There is an abundance of unannotated speech, so creating self-supervised representations from raw audio and finetuning on a small annotated datasets is a promising direction to build speech recognition systems. Wav2vec models perform SSL on raw audio in a pretraining phase and then finetune on a small fraction of annotated data. SSL models have produced state of the art results for ASR. However, these models are very expensive to pretrain with self-supervision. We tackle the problem of learning new language representations continually from audio without forgetting a previous language representation. We use ideas from continual learning to transfer knowledge from a previous task to speed up pretraining a new language task. Our continual-wav2vec2 model can decrease pretraining times by 32% when learning a new language task, and learn this new audio-language representation without forgetting previous language representation.
Recently, a semi-supervised learning method known as noisy student training has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmentation to improve network performance. In this work, we adapt and improve noisy student training for automatic speech recognition, employing (adaptive) SpecAugment as the augmentation method. We find effective methods to filter, balance and augment the data generated in between self-training iterations. By doing so, we are able to obtain word error rates (WERs) 4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h subset of LibriSpeech as the supervised set and the rest (860h) as the unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h (4.74%/12.20%) and LibriSpeech (1.9%/4.1%).
Stream fusion, also known as system combination, is a common technique in automatic speech recognition for traditional hybrid hidden Markov model approaches, yet mostly unexplored for modern deep neural network end-to-end model architectures. Here, we investigate various fusion techniques for the all-attention-based encoder-decoder architecture known as the transformer, striving to achieve optimal fusion by investigating different fusion levels in an example single-microphone setting with fusion of standard magnitude and phase features. We introduce a novel multi-encoder learning method that performs a weighted combination of two encoder-decoder multi-head attention outputs only during training. Employing then only the magnitude feature encoder in inference, we are able to show consistent improvement on Wall Street Journal (WSJ) with language model and on Librispeech, without increase in runtime or parameters. Combining two such multi-encoder trained models by a simple late fusion in inference, we achieve state-of-the-art performance for transformer-based models on WSJ with a significant WER reduction of 19% relative compared to the current benchmark approach.
Automatic speech recognition (ASR) systems promise to deliver objective interpretation of human speech. Practice and recent evidence suggests that the state-of-the-art (SotA) ASRs struggle with the large variation in speech due to e.g., gender, age, speech impairment, race, and accents. Many factors can cause the bias of an ASR system. Our overarching goal is to uncover bias in ASR systems to work towards proactive bias mitigation in ASR. This paper is a first step towards this goal and systematically quantifies the bias of a Dutch SotA ASR system against gender, age, regional accents and non-native accents. Word error rates are compared, and an in-depth phoneme-level error analysis is conducted to understand where bias is occurring. We primarily focus on bias due to articulation differences in the dataset. Based on our findings, we suggest bias mitigation strategies for ASR development.