We present a detailed study of inelastic energy-loss collisions of photoelectrons emitted from He nanodroplets by tunable extreme ultraviolet (XUV) radiation. Using coincidence imaging detection of electrons and ions, we probe the lowest He droplet excited states up to the electron impact ionization threshold. We find significant signal contributions from photoelectrons emitted from free He atoms accompanying the He nanodroplet beam. Furthermore, signal contributions from photoionization and electron impact excitation/ionization occurring in pairs of nearest-neighbor atoms in the He droplets are detected. This work highlights the importance of inelastic electron scattering in the interaction of nanoparticles with XUV radiation.
The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, helium nanodroplets are resonantly excited by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He*) within 1 ps. Subsequently, the bubble collapses and releases metastable He* at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.
Acene molecules (anthracene, tetracene, pentacene) and fullerene (C$_{60}$) are embedded in He nanodroplets (He$_N$) and probed by EUV synchrotron radiation. When resonantly exciting the He nanodroplets, the embedded molecules M are efficiently ionized by the Penning reaction $mathrm{He}_N^*+mathrm{M}rightarrowmathrm{He}_N + mathrm{M}^+ + e^-$. However, the Penning electron spectra are broad and structureless -- showing no resemblance neither with those measured by binary Penning collisions, nor with those measured for dopants bound to the He droplet surface. The similarity of all four spectra indicates that electron spectra of embedded species are substantially altered by electron-He scattering. Simulations based on elastic binary electron-He collisions qualitatively reproduce the measured spectra, but require the assumption of unexpectedly large He droplets.
Embedded atoms or molecules in a photoexcited He nanodroplet are well-known to be ionized through inter-atomic relaxation in a Penning process. In this work, we investigate the Penning ionization of acetylene oligomers occurring from the photoexcitation bands of He nanodroplets. In close analogy to conventional Penning electron spectroscopy by thermal atomic collisions, the n = 2 photoexcitation band plays the role of the metastable atomic $1s2s$ $^{3,1}S$ He$^ast$. This facilitates electron spectroscopy of acetylene aggregates in the sub-kelvin He environment, providing the following insight into their structure: The molecules in the dopant cluster are loosely bound van der Waals complexes rather than forming covalent compounds. In addition, this work reveals a Penning process stemming from the n = 4 band where charge-transfer from autoionized He in the droplets is known to be the dominant relaxation channel. This allows for excited states of the remnant dopant oligomer Penning-ions to be studied. Hence, we demonstrate Penning ionization electron spectroscopy of doped droplets as an effective technique for investigating dopant oligomers which are easily formed by attachment to the host cluster.
The desorption of excited rubidium (Rb) atoms off the surface of helium (He) nanodroplets is studied in detail using femtosecond time-resolved photoion and photoelectron imaging spectroscopy in combination with quantum wave packet simulations. The good agreement of the measured time-dependent velocity distributions with the simulation when exciting the Rb dopant atoms into the 6p-state supports the pseudo-diatomic model (PDM) for the Rb-He droplet interaction, even on the level of quantum wave packet dynamics. Time-resolved photoelectron spectra reveal the partitioning of excitation energy into the dopant and the droplet degrees of freedom.
The ionization dynamics of helium droplets in a wide size range from 220 to 10^6 He atoms irradiated with intense femtosecond extreme ultraviolet (XUV) pulses of 10^9 {div} 10^{12} W/cm2 power density is investigated in detail by photoelectron spectroscopy. Helium droplets are resonantly excited in the photon energy range from ~ 21 eV (corresponding to the atomic 1s2s state) up to the atomic ionization potential (IP) at ~ 25 eV. A complex evolution of the electron spectra as a function of droplet size and XUV intensity is observed, ranging from atomic-like narrow peaks due to binary autoionization, to an unstructured feature characteristic of electron emission from a nanoplasma. The experimental results are analyzed and interpreted with the help of numerical simulations based on rate equations taking into account various processes such as multi-step ionization, interatomic Coulombic decay (ICD), secondary inelastic collisions, desorption of electronically excited atoms, collective autoionization (CAI) and further relaxation processes.