Do you want to publish a course? Click here

Penning ionization of acene molecules by He nanodroplets

69   0   0.0 ( 0 )
 Added by Marcel Mudrich Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Acene molecules (anthracene, tetracene, pentacene) and fullerene (C$_{60}$) are embedded in He nanodroplets (He$_N$) and probed by EUV synchrotron radiation. When resonantly exciting the He nanodroplets, the embedded molecules M are efficiently ionized by the Penning reaction $mathrm{He}_N^*+mathrm{M}rightarrowmathrm{He}_N + mathrm{M}^+ + e^-$. However, the Penning electron spectra are broad and structureless -- showing no resemblance neither with those measured by binary Penning collisions, nor with those measured for dopants bound to the He droplet surface. The similarity of all four spectra indicates that electron spectra of embedded species are substantially altered by electron-He scattering. Simulations based on elastic binary electron-He collisions qualitatively reproduce the measured spectra, but require the assumption of unexpectedly large He droplets.

rate research

Read More

The ionization dynamics of pure He nanodroplets irradiated by EUV radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence (VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He+, He2+, and He3+. Surprisingly, below the autoionization threshold of He droplets we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we evidence inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.
71 - S. Mandal 2020
Embedded atoms or molecules in a photoexcited He nanodroplet are well-known to be ionized through inter-atomic relaxation in a Penning process. In this work, we investigate the Penning ionization of acetylene oligomers occurring from the photoexcitation bands of He nanodroplets. In close analogy to conventional Penning electron spectroscopy by thermal atomic collisions, the n = 2 photoexcitation band plays the role of the metastable atomic $1s2s$ $^{3,1}S$ He$^ast$. This facilitates electron spectroscopy of acetylene aggregates in the sub-kelvin He environment, providing the following insight into their structure: The molecules in the dopant cluster are loosely bound van der Waals complexes rather than forming covalent compounds. In addition, this work reveals a Penning process stemming from the n = 4 band where charge-transfer from autoionized He in the droplets is known to be the dominant relaxation channel. This allows for excited states of the remnant dopant oligomer Penning-ions to be studied. Hence, we demonstrate Penning ionization electron spectroscopy of doped droplets as an effective technique for investigating dopant oligomers which are easily formed by attachment to the host cluster.
Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared to He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.
We present a detailed study of inelastic energy-loss collisions of photoelectrons emitted from He nanodroplets by tunable extreme ultraviolet (XUV) radiation. Using coincidence imaging detection of electrons and ions, we probe the lowest He droplet excited states up to the electron impact ionization threshold. We find significant signal contributions from photoelectrons emitted from free He atoms accompanying the He nanodroplet beam. Furthermore, signal contributions from photoionization and electron impact excitation/ionization occurring in pairs of nearest-neighbor atoms in the He droplets are detected. This work highlights the importance of inelastic electron scattering in the interaction of nanoparticles with XUV radiation.
The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, helium nanodroplets are resonantly excited by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He*) within 1 ps. Subsequently, the bubble collapses and releases metastable He* at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا