We propose a measure and a metric on the sets of infinite traces generated by a set of atomic propositions. To compute these quantities, we first map properties to subsets of the real numbers and then take the Lebesgue measure of the resulting sets. We analyze how this measure is computed for Linear Temporal Logic (LTL) formulas. An implementation for computing the measure of bounded LTL properties is provided and explained. This implementation leverages SAT model counting and effects independence checks on subexpressions to compute the measure and metric compositionally.
Linear temporal logic was introduced in order to reason about reactive systems. It is often considered with respect to infinite words, to specify the behaviour of long-running systems. One can consider more general models for linear time, using words indexed by arbitrary linear orderings. We investigate the connections between temporal logic and automata on linear orderings, as introduced by Bruy`ere and Carton. We provide a doubly exponential procedure to compute from any LTL formula with Until, Since, and the Stavi connectives an automaton that decides whether that formula holds on the input word. In particular, since the emptiness problem for these automata is decidable, this transformation gives a decision procedure for the satisfiability of the logic.
In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form $bigwedge_{i=1}^n mathbf{G}mathbf{F} varphi_i vee mathbf{F}mathbf{G} psi_i$, where $varphi_i$ and $psi_i$ contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalisation procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present a direct and purely syntactic normalisation procedure for LTL yielding a normal form, comparable to the one by Chang, Manna, and Pnueli, that has only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalises the formula, translates it into a special very weak alternating automaton, and applies a simple determinisation procedure, valid only for these special automata.
For many applications, we are unable to take full advantage of the potential massive parallelisation offered by supercomputers or cloud computing because it is too hard to work out how to divide up the computation task between processors in such a way to minimise the need for communication. However, a recently developed branch-independent tableaux for the common LTL temporal logic should intuitively be easy to parallelise as each branch can be developed independently. Here we describe a simple technique for partitioning such a tableau such that each partition can be processed independently without need for interprocess communication. We investigate the extent to which this technique improves the performance of the LTL tableau on standard benchmarks and random formulas.
We propose a new graph-based spatial temporal logic for knowledge representation and automated reasoning in this paper. The proposed logic achieves a balance between expressiveness and tractability in applications such as cognitive robots. The satisfiability of the proposed logic is decidable. We apply a Hilbert style axiomatization for the proposed graph-based spatial temporal logic, in which Modus ponens and IRR are the inference rules. We show that the corresponding deduction system is sound and complete and can be implemented through SAT.
One of the advantages of adopting a Model Based Development (MBD) process is that it enables testing and verification at early stages of development. However, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies. In this work, we present a framework that enables property exploration for Cyber-Physical Systems. Namely, given a parametric specification with multiple parameters, our solution can automatically infer the ranges of parameters for which the property does not hold on the system. In this paper, we consider parametric specifications in Metric or Signal Temporal Logic (MTL or STL). Using robust semantics for MTL, the parameter mining problem can be converted into a Pareto optimization problem for which we can provide an approximate solution by utilizing stochastic optimization methods. We include algorithms for the exploration and visualization of multi-parametric specifications. The framework is demonstrated on an industrial size, high-fidelity engine model as well as examples from related literature.