Do you want to publish a course? Click here

Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples with Applications to Neuroimaging

77   0   0.0 ( 0 )
 Added by Seong Jae Hwang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Generative models using neural network have opened a door to large-scale studies for various application domains, especially for studies that suffer from lack of real samples to obtain statistically robust inference. Typically, these generative models would train on existing data to learn the underlying distribution of the measurements (e.g., images) in latent spaces conditioned on covariates (e.g., image labels), and generate independent samples that are identically distributed in the latent space. Such models may work for cross-sectional studies, however, they are not suitable to generate data for longitudinal studies that focus on progressive behavior in a sequence of data. In practice, this is a quite common case in various neuroimaging studies whose goal is to characterize a trajectory of pathologies of a specific disease even from early stages. This may be too ambitious especially when the sample size is small (e.g., up to a few hundreds). Motivated from the setup above, we seek to develop a conditional generative model for longitudinal data generation by designing an invertable neural network. Inspired by recurrent nature of longitudinal data, we propose a novel neural network that incorporates recurrent subnetwork and context gating to include smooth transition in a sequence of generated data. Our model is validated on a video sequence dataset and a longitudinal AD dataset with various experimental settings for qualitative and quantitative evaluations of the generated samples. The results with the AD dataset captures AD specific group differences with sufficiently generated longitudinal samples that are consistent with existing literature, which implies a great potential to be applicable to other disease studies.



rate research

Read More

106 - Yang Song , Jingwen Zhu , Dawei Li 2018
Given an arbitrary face image and an arbitrary speech clip, the proposed work attempts to generating the talking face video with accurate lip synchronization while maintaining smooth transition of both lip and facial movement over the entire video clip. Existing works either do not consider temporal dependency on face images across different video frames thus easily yielding noticeable/abrupt facial and lip movement or are only limited to the generation of talking face video for a specific person thus lacking generalization capacity. We propose a novel conditional video generation network where the audio input is treated as a condition for the recurrent adversarial network such that temporal dependency is incorporated to realize smooth transition for the lip and facial movement. In addition, we deploy a multi-task adversarial training scheme in the context of video generation to improve both photo-realism and the accuracy for lip synchronization. Finally, based on the phoneme distribution information extracted from the audio clip, we develop a sample selection method that effectively reduces the size of the training dataset without sacrificing the quality of the generated video. Extensive experiments on both controlled and uncontrolled datasets demonstrate the superiority of the proposed approach in terms of visual quality, lip sync accuracy, and smooth transition of lip and facial movement, as compared to the state-of-the-art.
A set is an unordered collection of unique elements--and yet many machine learning models that generate sets impose an implicit or explicit ordering. Since model performance can depend on the choice of order, any particular ordering can lead to sub-optimal results. An alternative solution is to use a permutation-equivariant set generator, which does not specify an order-ing. An example of such a generator is the DeepSet Prediction Network (DSPN). We introduce the Transformer Set Prediction Network (TSPN), a flexible permutation-equivariant model for set prediction based on the transformer, that builds upon and outperforms DSPN in the quality of predicted set elements and in the accuracy of their predicted sizes. We test our model on MNIST-as-point-clouds (SET-MNIST) for point-cloud generation and on CLEVR for object detection.
Generative models that can model and predict sequences of future events can, in principle, learn to capture complex real-world phenomena, such as physical interactions. However, a central challenge in video prediction is that the future is highly uncertain: a sequence of past observations of events can imply many possible futures. Although a number of recent works have studied probabilistic models that can represent uncertain futures, such models are either extremely expensive computationally as in the case of pixel-level autoregressive models, or do not directly optimize the likelihood of the data. To our knowledge, our work is the first to propose multi-frame video prediction with normalizing flows, which allows for direct optimization of the data likelihood, and produces high-quality stochastic predictions. We describe an approach for modeling the latent space dynamics, and demonstrate that flow-based generative models offer a viable and competitive approach to generative modelling of video.
83 - Xiangrui Xu , Yaqin Li , Cao Yuan 2020
This paper explores conditional image generation with a One-Vs-All classifier based on the Generative Adversarial Networks (GANs). Instead of the real/fake discriminator used in vanilla GANs, we propose to extend the discriminator to a One-Vs-All classifier (GAN-OVA) that can distinguish each input data to its category label. Specifically, we feed certain additional information as conditions to the generator and take the discriminator as a One-Vs-All classifier to identify each conditional category. Our model can be applied to different divergence or distances used to define the objective function, such as Jensen-Shannon divergence and Earth-Mover (or called Wasserstein-1) distance. We evaluate GAN-OVAs on MNIST and CelebA-HQ datasets, and the experimental results show that GAN-OVAs make progress toward stable training over regular conditional GANs. Furthermore, GAN-OVAs effectively accelerate the generation process of different classes and improves generation quality.
Traditional convolution-based generative adversarial networks synthesize images based on hierarchical local operations, where long-range dependency relation is implicitly modeled with a Markov chain. It is still not sufficient for categories with complicated structures. In this paper, we characterize long-range dependence with attentive normalization (AN), which is an extension to traditional instance normalization. Specifically, the input feature map is softly divided into several regions based on its internal semantic similarity, which are respectively normalized. It enhances consistency between distant regions with semantic correspondence. Compared with self-attention GAN, our attentive normalization does not need to measure the correlation of all locations, and thus can be directly applied to large-size feature maps without much computational burden. Extensive experiments on class-conditional image generation and semantic inpainting verify the efficacy of our proposed module.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا