Do you want to publish a course? Click here

A note on simultaneous representation problem for interval and circular-arc graphs

93   0   0.0 ( 0 )
 Added by Jan Bok
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this short note, we show two NP-completeness results regarding the emph{simultaneous representation problem}, introduced by Lubiw and Jampani. The simultaneous representation problem for a given class of intersection graphs asks if some $k$ graphs can be represented so that every vertex is represented by the same interval in each representation. We prove that it is NP-complete to decide this for the class of interval and circular-arc graphs in the case when $k$ is a part of the input and graphs are not in a sunflower position.



rate research

Read More

A circular-arc graph is the intersection graph of arcs of a circle. It is a well-studied graph model with numerous natural applications. A certifying algorithm is an algorithm that outputs a certificate, along with its answer (be it positive or negative), where the certificate can be used to easily justify the given answer. While the recognition of circular-arc graphs has been known to be polynomial since the 1980s, no polynomial-time certifying recognition algorithm is known to date, despite such algorithms being found for many subclasses of circular-arc graphs. This is largely due to the fact that a forbidden structure characterization of circular-arc graphs is not known, even though the problem has been intensely studied since the seminal work of Klee in the 1960s. In this contribution, we settle this problem. We present the first forbidden structure characterization of circular-arc graphs. Our obstruction has the form of mutually avoiding walks in the graph. It naturally extends a similar obstruction that characterizes interval graphs. As a consequence, we give the first polynomial-time certifying algorithm for the recognition of circular-arc graphs.
This note resolves an open problem asked by Bezrukov in the open problem session of IWOCA 2014. It shows an equivalence between regular graphs and graphs for which a sequence of invariants presents some symmetric property. We extend this result to a few other sequences.
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular arcs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-arc model, our algorithm constructs it canonically, which means that the models constructed for isomorphic graphs are equal.
276 - Peter Zeman 2017
The partial representation extension problem, introduced by Klav{i}k et al. (2011), generalizes the recognition problem. In this short note we show that this problem is NP-complete for unit circular-arc graphs.
A matching $M$ in a graph $G$ is said to be uniquely restricted if there is no other matching in $G$ that matches the same set of vertices as $M$. We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching in an interval graph, thereby answering a question of Golumbic et al. (Uniquely restricted matchings, M. C. Golumbic, T. Hirst and M. Lewenstein, Algorithmica, 31:139--154, 2001). Our algorithm actually solves the more general problem of computing a maximum cardinality strong independent set in an interval nest digraph, which may be of independent interest. Further, we give linear-time algorithms for computing maximum cardinality uniquely restricted matchings in proper interval graphs and bipartite permutation graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا