Do you want to publish a course? Click here

Planning Low-Carbon Campus Energy Hubs

88   0   0.0 ( 0 )
 Added by Daniel Olsen
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Multi-energy systems can provide a constant level of service to end-use energy demands, while deriving delivered energy from a variety of primary/secondary energy sources. This fuel-switching capability can be used to reduce operating expenses, reduce environmental impacts, improve flexibility to accommodate renewable energy, and improve reliability. This paper presents four frameworks for incentivizing energy hub equipment investments for low-carbon operation targets. These frameworks vary in the measures taken to achieve low-carbon operation (explicit constraint vs. carbon pricing) and in the relationship between the hub builder and operator (cooperative vs. uncoordinated). The underlying energy hub model upon which these frameworks are built is an enhanced greenfield model, introducing energy buses to reduce dimensionality. A case study is conducted for a campus being designed in Beijing, and results from each framework are compared to illustrate their relative costs. When the operator cannot be trusted to cooperate in controlling emissions, the system must be overbuilt with more expensive equipment to ensure emissions target are met. A taxation-based approach increases overall costs at moderate emissions targets, but this effect decreases at aggressive targets. This paper also compares the cost of less efficient institutional frameworks with the most efficient approach, i.e. cooperation between builder and operator with constraints on emissions.

rate research

Read More

This paper studies the economics of carbon-neutral synthetic fuel production from renewable electricity in remote areas where high-quality renewable resources are abundant. To this end, a graph-based optimisation modelling framework directly applicable to the strategic planning of remote renewable energy supply chains is proposed. More precisely, a hypergraph abstraction of planning problems is introduced, wherein nodes can be viewed as optimisation subproblems with their own parameters, variables, constraints and local objective. Nodes typically represent a subsystem such as a technology, a plant or a process. Hyperedges, on the other hand, express the connectivity between subsystems. The framework is leveraged to study the economics of carbon-neutral synthetic methane production from solar and wind energy in North Africa and its delivery to Northwestern European markets. The full supply chain is modelled in an integrated fashion, which makes it possible to accurately capture the interaction between various technologies on an hourly time scale. Results suggest that the cost of synthetic methane production and delivery would be slightly under 150 EUR/MWh (higher heating value) by 2030 for a system supplying 10 TWh annually and relying on a combination of solar photovoltaic and wind power plants, assuming a uniform weighted average cost of capital of 7%. A comprehensive sensitivity analysis is also carried out in order to assess the impact of various techno-economic parameters and assumptions on synthetic methane cost, including the availability of wind power plants, the investment costs of electrolysis, methanation and direct air capture plants, their operational flexibility, the energy consumption of direct air capture plants, and financing costs.
This paper introduces the full Low-carbon Expansion Generation Optimization (LEGO) model available on Github (https://github.com/wogrin/LEGO). LEGO is a mixed-integer quadratically constrained optimization problem and has been designed to be a multi-purpose tool, like a Swiss army knife, that can be employed to study many different aspects of the energy sector. Ranging from short-term unit commitment to long-term generation and transmission expansion planning. The underlying modeling philosophies are: modularity and flexibility. Its unique temporal structure allows LEGO to function with either chronological hourly data, or all kinds of representative periods. LEGO is also composed of thematic modules that can be added or removed from the model easily via data options depending on the scope of the study. Those modules include: unit commitment constraints; DC- or AC-OPF formulations; battery degradation; rate of change of frequency inertia constraints; demand-side management; or the hydrogen sector. LEGO also provides a plethora of model outputs (both primal and dual), which is the basis for both technical but also economic analyses. To our knowledge, there is no model that combines all of these capabilities, which we hereby make freely available to the scientific community.
We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of a decision-makers trajectories while guaranteeing the completion of a task expressed by a reward function. First, we prove that a decision-maker with perfect observations can randomize its paths at least as well as a decision-maker with partial observations. Then, focusing on finite-state controllers, we recast the entropy maximization problem as a so-called parameter synthesis problem for a parametric Markov chain (pMC). We show that the maximum entropy of a POMDP is lower bounded by the maximum entropy of this pMC. Finally, we present an algorithm, based on a nonlinear optimization problem, to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same number of memory states. In numerical examples, we demonstrate the proposed algorithm on motion planning scenarios.
We propose a novel method for motion planning and illustrate its implementation on several canonical examples. The core novel idea underlying the method is to define a metric for which a path of minimal length is an admissible path, that is path that respects the various constraints imposed by the environment and the physics of the system on its dynamics. To be more precise, our method takes as input a control system with holonomic and non-holonomic constraints, an initial and final point in configuration space, a description of obstacles to avoid, and an initial trajectory for the system, called a sketch. This initial trajectory does not need to meet the constraints, except for the obstacle avoidance constraints. The constraints are then encoded in an inner product, which is used to deform (via a homotopy) the initial sketch into an admissible trajectory from which controls realizing the transfer can be obtained. We illustrate the method on various examples, including vehicle motion with obstacles and a two-link manipulator problem.
The energy consumption of deep learning models is increasing at a breathtaking rate, which raises concerns due to potential negative effects on carbon neutrality in the context of global warming and climate change. With the progress of efficient deep learning techniques, e.g., model compression, researchers can obtain efficient models with fewer parameters and smaller latency. However, most of the existing efficient deep learning methods do not explicitly consider energy consumption as a key performance indicator. Furthermore, existing methods mostly focus on the inference costs of the resulting efficient models, but neglect the notable energy consumption throughout the entire life cycle of the algorithm. In this paper, we present the first large-scale energy consumption benchmark for efficient computer vision models, where a new metric is proposed to explicitly evaluate the full-cycle energy consumption under different model usage intensity. The benchmark can provide insights for low carbon emission when selecting efficient deep learning algorithms in different model usage scenarios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا