No Arabic abstract
We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of a decision-makers trajectories while guaranteeing the completion of a task expressed by a reward function. First, we prove that a decision-maker with perfect observations can randomize its paths at least as well as a decision-maker with partial observations. Then, focusing on finite-state controllers, we recast the entropy maximization problem as a so-called parameter synthesis problem for a parametric Markov chain (pMC). We show that the maximum entropy of a POMDP is lower bounded by the maximum entropy of this pMC. Finally, we present an algorithm, based on a nonlinear optimization problem, to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same number of memory states. In numerical examples, we demonstrate the proposed algorithm on motion planning scenarios.
In this paper, we address the problem of stochastic motion planning under partial observability, more specifically, how to navigate a mobile robot equipped with continuous range sensors such as LIDAR. In contrast to many existing robotic motion planning methods, we explicitly consider the uncertainty of the robot state by modeling the system as a POMDP. Recent work on general purpose POMDP solvers is typically limited to discrete observation spaces, and does not readily apply to the proposed problem due to the continuous measurements from LIDAR. In this work, we build upon an existing Monte Carlo Tree Search method, POMCP, and propose a new algorithm POMCP++. Our algorithm can handle continuous observation spaces with a novel measurement selection strategy. The POMCP++ algorithm overcomes over-optimism in the value estimation of a rollout policy by removing the implicit perfect state assumption at the rollout phase. We validate POMCP++ in theory by proving it is a Monte Carlo Tree Search algorithm. Through comparisons with other methods that can also be applied to the proposed problem, we show that POMCP++ yields significantly higher success rate and total reward.
We consider the problem of predictive monitoring (PM), i.e., predicting at runtime future violations of a system from the current state. We work under the most realistic settings where only partial and noisy observations of the state are available at runtime. Such settings directly affect the accuracy and reliability of the reachability predictions, jeopardizing the safety of the system. In this work, we present a learning-based method for PM that produces accurate and reliable reachability predictions despite partial observability (PO). We build on Neural Predictive Monitoring (NPM), a PM method that uses deep neural networks for approximating hybrid systems reachability, and extend it to the PO case. We propose and compare two solutions, an end-to-end approach, which directly operates on the rough observations, and a two-step approach, which introduces an intermediate state estimation step. Both solutions rely on conformal prediction to provide 1) probabilistic guarantees in the form of prediction regions and 2) sound estimates of predictive uncertainty. We use the latter to identify unreliable (and likely erroneous) predictions and to retrain and improve the monitors on these uncertain inputs (i.e., active learning). Our method results in highly accurate reachability predictions and error detection, as well as tight prediction regions with guaranteed coverage.
Recent renewed interest in multi-agent reinforcement learning (MARL) has generated an impressive array of techniques that leverage deep reinforcement learning, primarily actor-critic architectures, and can be applied to a limited range of settings in terms of observability and communication. However, a continuing limitation of much of this work is the curse of dimensionality when it comes to representations based on joint actions, which grow exponentially with the number of agents. In this paper, we squarely focus on this challenge of scalability. We apply the key insight of action anonymity, which leads to permutation invariance of joint actions, to two recently presented deep MARL algorithms, MADDPG and IA2C, and compare these instantiations to another recent technique that leverages action anonymity, viz., mean-field MARL. We show that our instantiations can learn the optimal behavior in a broader class of agent networks than the mean-field method, using a recently introduced pragmatic domain.
Many real-world tasks involve multiple agents with partial observability and limited communication. Learning is challenging in these settings due to local viewpoints of agents, which perceive the world as non-stationary due to concurrently-exploring teammates. Approaches that learn specialized policies for individual tasks face problems when applied to the real world: not only do agents have to learn and store distinct policies for each task, but in practice identities of tasks are often non-observable, making these approaches inapplicable. This paper formalizes and addresses the problem of multi-task multi-agent reinforcement learning under partial observability. We introduce a decentralized single-task learning approach that is robust to concurrent interactions of teammates, and present an approach for distilling single-task policies into a unified policy that performs well across multiple related tasks, without explicit provision of task identity.
We consider a scheduler for the downlink of a wireless channel when only partial channel-state information is available at the scheduler. We characterize the network stability region and provide two throughput-optimal scheduling policies. We also derive a deterministic bound on the mean packet delay in the network. Finally, we provide a throughput-optimal policy for the network under QoS constraints when real-time and rate-guaranteed data traffic may be present.