Do you want to publish a course? Click here

A decade of ejecta dust formation in the Type IIn SN 2005ip

304   0   0.0 ( 0 )
 Added by Antonia Bevan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to understand the contribution of core-collapse supernovae to the dust budget of the early universe, it is important to understand not only the mass of dust that can form in core-collapse supernovae but also the location and rate of dust formation. SN 2005ip is of particular interest since dust has been inferred to have formed in both the ejecta and the post-shock region behind the radiative reverse shock. We have collated eight optical archival spectra that span the lifetime of SN 2005ip and we additionally present a new X-shooter optical-near-IR spectrum of SN 2005ip at 4075d post-discovery. Using the Monte Carlo line transfer code DAMOCLES, we have modelled the blueshifted broad and intermediate width H$alpha$, H$beta$ and He I lines from 48d to 4075d post-discovery using an ejecta dust model. We find that dust in the ejecta can account for the asymmetries observed in the broad and intermediate width H$alpha$, H$beta$ and He I line profiles at all epochs and that it is not necessary to invoke post-shock dust formation to explain the blueshifting observed in the intermediate width post-shock lines. Using a Bayesian approach, we have determined the evolution of the ejecta dust mass in SN 2005ip over 10 years presuming an ejecta dust model, with an increasing dust mass from ~10$^{-8}$ M$_{odot}$ at 48d to a current dust mass of $sim$0.1 M$_{odot}$.



rate research

Read More

The physical characteristics of dust formed in supernovae is poorly known. In this paper, we investigate the extinction properties of dust formed in the type IIn SN 2005ip. The observed light curves of SN 2005ip all exhibit a sudden drop around 50 days after discovery. This has been attributed to dust formation in the dense circumstellar medium. We modeled the intrinsic light curves in six optical bands, adopting a theoretical model for the luminosity evolution of supernovae interacting with their circumstellar material. From the difference between the observed and intrinsic light curves, we calculated extinction curves as a function of time. The total-to-selective extinction ratio, $R_V$, was determined from the extinction in the B and V bands. The resulting extinction, $A_V$, increases monotonically up to about 1 mag, 150 days after discovery. The inferred $R_V$ value also increases slightly with time, but appears constant in the range 4.5--8, beyond 100 days after discovery. The analysis confirms that dust is likely formed in SN 2005ip, starting about two months after explosion. The high value of $R_V$, that is, gray dust, suggests dust properties different from of the Milky Way. While this result hinges on the assumed theoretical intrinsic light curve evolution, it is encouraging that the fitted light curves are as expected for standard ejecta and circumstellar medium density structures.
We present optical photometry and spectroscopy of SN2005ip for the first 3yr after discovery, showing an underlying Type II-L SN interacting with a steady wind to yield an unusual Type IIn spectrum. For the first 160d, it had a fast linear decline from a modest peak absolute magnitude of about -17.4 (unfiltered), followed by a plateau at roughly -14.8 for more than 2yr. Initially having a normal broad-lined spectrum superposed with sparse narrow lines from the photoionized CSM, it quickly developed signs of strong CSM interaction with a spectrum similar to that of SN1988Z. As the underlying SNII-L faded, SN2005ip exhibited a rich high-ionization spectrum with a dense forest of narrow coronal lines, unprecedented among SNe but reminiscent of some active galactic nuclei. The line-profile evolution of SN 2005ip confirms that dust formation caused its recently reported infrared excess, but these lines reveal that it is the first SN to show clear evidence for dust in both the fast SN ejecta and the slower post-shock gas. SN2005ips complex spectrum confirms the origin of the strange blue continuum in SN2006jc, which also had post-shock dust formation. We suggest that SN2005ips late-time plateau and coronal spectrum result from rejuvenated CSM interaction between a sustained fast shock and a clumpy stellar wind, where X-rays escape through the optically thin interclump regions to heat the pre-shock CSM to coronal temperatures.
Near-infrared photometric observations of the Type IIn SN 2005ip in NGC 2906 reveal large fluxes (>1.3 mJy) in the K_s-band over more than 900 days. While warm dust can explain the late-time K_s-band emission of SN 2005ip, the nature of the dust heating source is ambiguous. Shock heating of pre-existing dust by post-shocked gas is unlikely because the forward shock is moving too slowly to have traversed the expected dust-free cavity by the time observations first reveal the K_s emission. While an infrared light echo model correctly predicts a near-infrared luminosity plateau, heating dust to the observed temperatures of ~1400-1600 K at a relatively large distance from the supernova (> 10^{18} cm) requires an extraordinarily high early supernova luminosity (~1 X 10^{11} L_solar). The evidence instead favors condensing dust in the cool, dense shell between the forward and reverse shocks. Both the initial dust temperature and the evolutionary trend towards lower temperatures are consistent with this scenario. We infer that radiation from the circumstellar interaction heats the dust. While this paper includes no spectroscopic confirmation, the photometry is comparable to other SNe that do show spectroscopic evidence for dust formation. Observations of dust formation in SNe are sparse, so these results provide a rare opportunity to consider SNe Type IIn as dust sources.
129 - Ori D. Fox 2016
The nature of the progenitor star (or system) for the Type IIn supernova (SN) subclass remains uncertain. While there are direct imaging constraints on the progenitors of at least four Type IIn supernovae, one of them being SN 2010jl, ambiguities remain in the interpretation of the unstable progenitors and the explosive events themselves. A blue source in pre-explosion HST/WFPC2 images falls within the 5 sigma astrometric error circle derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently for post-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014 and 2015, when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0.099 +/- 0.008 (24 +/- 2 pc) from the underlying and extended source of emission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (<5-6 Myr) cluster and still argues for a massive (>30 solar masses) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.
143 - C. Trundle 2009
An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا