Do you want to publish a course? Click here

Coronal lines and dust formation in SN 2005ip: Not the brightest, but the hottest Type IIn supernova

166   0   0.0 ( 0 )
 Added by Nathan Smith
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical photometry and spectroscopy of SN2005ip for the first 3yr after discovery, showing an underlying Type II-L SN interacting with a steady wind to yield an unusual Type IIn spectrum. For the first 160d, it had a fast linear decline from a modest peak absolute magnitude of about -17.4 (unfiltered), followed by a plateau at roughly -14.8 for more than 2yr. Initially having a normal broad-lined spectrum superposed with sparse narrow lines from the photoionized CSM, it quickly developed signs of strong CSM interaction with a spectrum similar to that of SN1988Z. As the underlying SNII-L faded, SN2005ip exhibited a rich high-ionization spectrum with a dense forest of narrow coronal lines, unprecedented among SNe but reminiscent of some active galactic nuclei. The line-profile evolution of SN 2005ip confirms that dust formation caused its recently reported infrared excess, but these lines reveal that it is the first SN to show clear evidence for dust in both the fast SN ejecta and the slower post-shock gas. SN2005ips complex spectrum confirms the origin of the strange blue continuum in SN2006jc, which also had post-shock dust formation. We suggest that SN2005ips late-time plateau and coronal spectrum result from rejuvenated CSM interaction between a sustained fast shock and a clumpy stellar wind, where X-rays escape through the optically thin interclump regions to heat the pre-shock CSM to coronal temperatures.



rate research

Read More

The physical characteristics of dust formed in supernovae is poorly known. In this paper, we investigate the extinction properties of dust formed in the type IIn SN 2005ip. The observed light curves of SN 2005ip all exhibit a sudden drop around 50 days after discovery. This has been attributed to dust formation in the dense circumstellar medium. We modeled the intrinsic light curves in six optical bands, adopting a theoretical model for the luminosity evolution of supernovae interacting with their circumstellar material. From the difference between the observed and intrinsic light curves, we calculated extinction curves as a function of time. The total-to-selective extinction ratio, $R_V$, was determined from the extinction in the B and V bands. The resulting extinction, $A_V$, increases monotonically up to about 1 mag, 150 days after discovery. The inferred $R_V$ value also increases slightly with time, but appears constant in the range 4.5--8, beyond 100 days after discovery. The analysis confirms that dust is likely formed in SN 2005ip, starting about two months after explosion. The high value of $R_V$, that is, gray dust, suggests dust properties different from of the Milky Way. While this result hinges on the assumed theoretical intrinsic light curve evolution, it is encouraging that the fitted light curves are as expected for standard ejecta and circumstellar medium density structures.
In order to understand the contribution of core-collapse supernovae to the dust budget of the early universe, it is important to understand not only the mass of dust that can form in core-collapse supernovae but also the location and rate of dust formation. SN 2005ip is of particular interest since dust has been inferred to have formed in both the ejecta and the post-shock region behind the radiative reverse shock. We have collated eight optical archival spectra that span the lifetime of SN 2005ip and we additionally present a new X-shooter optical-near-IR spectrum of SN 2005ip at 4075d post-discovery. Using the Monte Carlo line transfer code DAMOCLES, we have modelled the blueshifted broad and intermediate width H$alpha$, H$beta$ and He I lines from 48d to 4075d post-discovery using an ejecta dust model. We find that dust in the ejecta can account for the asymmetries observed in the broad and intermediate width H$alpha$, H$beta$ and He I line profiles at all epochs and that it is not necessary to invoke post-shock dust formation to explain the blueshifting observed in the intermediate width post-shock lines. Using a Bayesian approach, we have determined the evolution of the ejecta dust mass in SN 2005ip over 10 years presuming an ejecta dust model, with an increasing dust mass from ~10$^{-8}$ M$_{odot}$ at 48d to a current dust mass of $sim$0.1 M$_{odot}$.
Near-infrared photometric observations of the Type IIn SN 2005ip in NGC 2906 reveal large fluxes (>1.3 mJy) in the K_s-band over more than 900 days. While warm dust can explain the late-time K_s-band emission of SN 2005ip, the nature of the dust heating source is ambiguous. Shock heating of pre-existing dust by post-shocked gas is unlikely because the forward shock is moving too slowly to have traversed the expected dust-free cavity by the time observations first reveal the K_s emission. While an infrared light echo model correctly predicts a near-infrared luminosity plateau, heating dust to the observed temperatures of ~1400-1600 K at a relatively large distance from the supernova (> 10^{18} cm) requires an extraordinarily high early supernova luminosity (~1 X 10^{11} L_solar). The evidence instead favors condensing dust in the cool, dense shell between the forward and reverse shocks. Both the initial dust temperature and the evolutionary trend towards lower temperatures are consistent with this scenario. We infer that radiation from the circumstellar interaction heats the dust. While this paper includes no spectroscopic confirmation, the photometry is comparable to other SNe that do show spectroscopic evidence for dust formation. Observations of dust formation in SNe are sparse, so these results provide a rare opportunity to consider SNe Type IIn as dust sources.
444 - E. Kankare , M. Ergon , F. Bufano 2012
We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning ~1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum ~1000 km s^-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Contrarily, the photometric evolution resembles more that of a Type IIP SN with a large drop in luminosity at the end of the plateau phase. These characteristics are similar to those of SN 1994W, whose nature has been explained with two different models with different approaches. The well-sampled data set on SN 2009kn offers the possibility to test these models, in the case of both SN 2009kn and SN 1994W. We associate the narrow P Cygni lines with a swept-up shell composed of circumstellar matter and SN ejecta. The broad emission line wings, seen during the plateau phase, arise from internal electron scattering in this shell. The slope of the light curve after the post-plateau drop is fairly consistent with that expected from the radioactive decay of 56Co, suggesting an SN origin for SN 2009kn. Assuming radioactivity to be the main source powering the light curve of SN 2009kn in the tail phase, we infer an upper limit for 56Ni mass of 0.023 M_sun. This is significantly higher than that estimated for SN 1994W, which also showed a much steeper decline of the light curve after the post-plateau drop. We also observe late-time near-infrared emission which most likely arises from newly formed dust produced by SN 2009kn. As with SN 1994W, no broad lines are observed in the spectra of SN 2009kn, not even in the late-time tail phase.
459 - Satoru Katsuda 2013
We report on X-ray spectral evolution of the nearby Type IIn supernova (SN) 2005ip, based on Chandra and Swift observations covering from ~1 to 6 years after the explosion. X-ray spectra in all epochs are well fitted by a thermal emission model with kT > 7 keV. The somewhat high temperature suggests that the X-ray emission mainly arises from the circumstellar medium heated by the forward shock. We find that the spectra taken 2-3 years since the explosion are heavily absorbed N_H ~ 5e22 cm^{-2}, but the absorption gradually decreases to the level of the Galactic absorption N_H ~ 4e20 cm^{-2} at the final epoch. This indicates that the SN went off in a dense circumstellar medium and that the forward shock has overtaken it. The intrinsic X-ray luminosity stays constant until the final epoch when it drops by a factor of ~2. The intrinsic 0.2-10 keV luminosity during the plateau phase is measured to be ~1.5e41 erg/s, ranking SN 2005ip as one of the brightest X-ray SNe. Based on the column density, we derive a lower-limit of a mass-loss rate to be M_dot ~ 0.015 (V_w/100 km/s) M_sun/yr, which roughly agrees with that inferred from the X-ray luminosity, M_dot ~ 0.02 (V_w/100 km/s) M_sun/yr, where V_w is the circumstellar wind speed. Such a high mass-loss rate suggests that the progenitor star had eruptive mass ejections like a luminous blue variable star. The total mass ejected in the eruptive period is estimated to be ~15 M_sun, indicating that the progenitor mass is greater than ~25 M_sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا