No Arabic abstract
Integrating unmanned aerial vehicles (UAVs) into the cellular network as new aerial users is a promising solution to meet their ever-increasing communication demands in a plethora of applications. Due to the high UAV altitude, the channels between UAVs and the ground base stations (GBSs) are dominated by the strong line-of-sight (LoS) links, thus severe interference may be generated to/from the GBSs in the uplink/downlink, which renders the interference management with coexisting terrestrial and aerial users a more challenging problem to solve. In this paper, we study the uplink communication from a multi-antenna UAV to a set of GBSs in its signal coverage region. Among these GBSs, we denote available GBSs as the ones that do not serve any terrestrial users at the assigned resource block (RB) of the UAV, and occupied GBSs as the rest that are serving their respectively associated terrestrial users in the same RB. We propose a new cooperative interference cancellation strategy for the multi-beam UAV uplink communication, which aims to eliminate the co-channel interference at each of the occupied GBSs and in the meanwhile maximize the sum-rate to the available GBSs. Specifically, the multi-antenna UAV sends multiple data streams to selected available GBSs, which in turn forward their decoded data streams to their backhaul-connected occupied GBSs for interference cancellation. To draw useful insights, the maximum degrees-of-freedom (DoF) achievable by the multi-beam UAV communication for sum-rate maximization in the high signal-to-noise ratio (SNR) regime is first characterized, subject to the stringent constraint that all the occupied GBSs do not suffer from any interference in the UAVs uplink transmission. Then, based on the DoF-optimal design, the achievable sum-rate at finite SNR is maximized, subject to given maximum allowable interference power constraints at each occupied GBS.
This letter studies a cellular-connected unmanned aerial vehicle (UAV) scenario, in which a UAV user communicates with ground base stations (GBSs) in cellular uplink by sharing the spectrum with ground users (GUs). To deal with the severe air-to-ground (A2G) co-channel interference, we consider an adaptive interference cancellation (IC) approach, in which each GBS can decode the GUs messages by adaptively switching between the modes of IC (i.e., precanceling the UAVs resultant interference) and treating interference as noise (TIN). By designing the GBSs decoding modes, jointly with the wireless resource allocation and the UAVs trajectory control, we maximize the UAVs data-rate throughput over a finite mission period, while ensuring the minimum data-rate requirements at individual GUs. We propose an efficient algorithm to solve the throughput maximization problem by using the techniques of alternating optimization and successive convex approximation (SCA). Numerical results show that our proposed design significantly improves the UAVs throughput as compared to the benchmark schemes without the adaptive IC and/or trajectory optimization.
MIMO interference network optimization is important for increasingly crowded wireless communication networks. We provide a new algorithm, named Dual Link algorithm, for the classic problem of weighted sum-rate maximization for MIMO multiaccess channels (MAC), broadcast channels (BC), and general MIMO interference channels with Gaussian input and a total power constraint. For MIMO MAC/BC, the algorithm finds optimal signals to achieve the capacity region boundary. For interference channels with Gaussian input assumption, two of the previous state-of-the-art algorithms are the WMMSE algorithm and the polite water-filling (PWF) algorithm. The WMMSE algorithm is provably convergent, while the PWF algorithm takes the advantage of the optimal transmit signal structure and converges the fastest in most situations but is not guaranteed to converge in all situations. It is highly desirable to design an algorithm that has the advantages of both algorithms. The dual link algorithm is such an algorithm. Its fast and guaranteed convergence is important to distributed implementation and time varying channels. In addition, the technique and a scaling invariance property used in the convergence proof may find applications in other non-convex problems in communication networks.
We consider a downlink cellular network where multi-antenna base stations (BSs) transmit data to single-antenna users by using one of two linear precoding methods with limited feedback: (i) maximum ratio transmission (MRT) for serving a single user or (ii) zero forcing (ZF) for serving multiple users. The BS and user locations are drawn from a Poisson point process, allowing expressions for the signal- to-interference coverage probability and the ergodic spectral efficiency to be derived as a function of system parameters such as the number of BS antennas and feedback bits, and the pathloss exponent. We find a tight lower bound on the optimum number of feedback bits to maximize the net spectral efficiency, which captures the overall system gain by considering both of downlink and uplink spectral efficiency using limited feedback. Our main finding is that, when using MRT, the optimum number of feedback bits scales linearly with the number of antennas, and logarithmically with the channel coherence time. When using ZF, the feedback scales in the same ways as MRT, but also linearly with the pathloss exponent. The derived results provide system-level insights into the preferred channel codebook size by averaging the effects of short-term fading and long-term pathloss.
This letter proposes a new full-duplex (FD) secrecy communication scheme for the unmanned aerial vehicle (UAV) and investigates its optimal design to achieve the maximum energy efficiency (EE) of the UAV. Specifically, the UAV receives the confidential information from a ground source and meanwhile sends jamming signals to interfere with a potential ground eavesdropper. As the UAV has limited on-board energy in practice, we aim to maximize the EE for its secrecy communication, by jointly optimizing the UAV trajectory and the source/UAV transmit/jamming powers over a finite flight period with given initial and final locations. Although the problem is difficult to solve, we propose an efficient iterative algorithm to obtain its suboptimal solution. Simulation results show that the proposed joint design can significantly improve the EE of UAV secrecy communication, as compared to various benchmark schemes.
In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which it needs to maintain reliable wireless connection with the cellular network by associating with one of the GBSs at each time instant. We aim to minimize the UAV mission completion time by optimizing its trajectory, subject to a quality of connectivity constraint of the GBS-UAV link specified by a minimum received signal-to-noise ratio (SNR) target, which needs to be satisfied throughout the mission. This problem is non-convex and difficult to be optimally solved. We first propose an effective approach to check its feasibility based on graph connectivity verification. Then, by examining the GBS-UAV association sequence during the UAV mission, we obtain useful insights on the optimal UAV trajectory, based on which an efficient algorithm is proposed to find an approximate solution to the trajectory optimization problem by leveraging techniques in convex optimization and graph theory. Numerical results show that our proposed trajectory design achieves near-optimal performance.