Do you want to publish a course? Click here

Dual Link Algorithm for the Weighted Sum Rate Maximization in MIMO Interference Channels

362   0   0.0 ( 0 )
 Added by Xing Li
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

MIMO interference network optimization is important for increasingly crowded wireless communication networks. We provide a new algorithm, named Dual Link algorithm, for the classic problem of weighted sum-rate maximization for MIMO multiaccess channels (MAC), broadcast channels (BC), and general MIMO interference channels with Gaussian input and a total power constraint. For MIMO MAC/BC, the algorithm finds optimal signals to achieve the capacity region boundary. For interference channels with Gaussian input assumption, two of the previous state-of-the-art algorithms are the WMMSE algorithm and the polite water-filling (PWF) algorithm. The WMMSE algorithm is provably convergent, while the PWF algorithm takes the advantage of the optimal transmit signal structure and converges the fastest in most situations but is not guaranteed to converge in all situations. It is highly desirable to design an algorithm that has the advantages of both algorithms. The dual link algorithm is such an algorithm. Its fast and guaranteed convergence is important to distributed implementation and time varying channels. In addition, the technique and a scaling invariance property used in the convergence proof may find applications in other non-convex problems in communication networks.



rate research

Read More

Physical-layer key generation (PKG) based on channel reciprocity has recently emerged as a new technique to establish secret keys between devices. Most works focus on pairwise communication scenarios with single or small-scale antennas. However, the fifth generation (5G) wireless communications employ massive multiple-input multiple-output (MIMO) to support multiple users simultaneously, bringing serious overhead of reciprocal channel acquisition. This paper presents a multi-user secret key generation in massive MIMO wireless networks. We provide a beam domain channel model, in which different elements represent the channel gains from different transmit directions to different receive directions. Based on this channel model, we analyze the secret key rate and derive a closed-form expression under independent channel conditions. To maximize the sum secret key rate, we provide the optimal conditions for the Kronecker product of the precoding and receiving matrices and propose an algorithm to generate these matrices with pilot reuse. The proposed optimization design can significantly reduce the pilot overhead of the reciprocal channel state information acquisition. Furthermore, we analyze the security under the channel correlation between user terminals (UTs), and propose a low overhead multi-user secret key generation with non-overlapping beams between UTs. Simulation results demonstrate the near optimal performance of the proposed precoding and receiving matrices design and the advantages of the non-overlapping beam allocation.
Interference alignment (IA) is a joint-transmission technique that achieves the capacity of the interference channel for high signal-to-noise ratios (SNRs). Most prior work on IA is based on the impractical assumption that perfect and global channel-state information(CSI) is available at all transmitters. To implement IA, each receiver has to feed back CSI to all interferers, resulting in overwhelming feedback overhead. In particular, the sum feedback rate of each receiver scales quadratically with the number of users even if the quantized CSI is fed back. To substantially suppress feedback overhead, this paper focuses on designing efficient arrangements of feedback links, called feedback topologies, under the IA constraint. For the multiple-input-multiple-output (MIMO) K-user interference channel, we propose the feedback topology that supports sequential CSI exchange (feedback and feedforward) between transmitters and receivers so as to achieve IA progressively. This feedback topology is shown to reduce the network feedback overhead from a cubic function of K to a linear one. To reduce the delay in the sequential CSI exchange, an alternative feedback topology is designed for supporting two-hop feedback via a control station, which also achieves the linear feedback scaling with K. Next, given the proposed feedback topologies, the feedback-bit allocation algorithm is designed for allocating feedback bits by each receiver to different feedback links so as to regulate the residual interference caused by the finite-rate feedback. Simulation results demonstrate that the proposed bit allocation leads to significant throughput gains especially in strong interference environments.
Smart and reconfigurable wireless communication environments can be established by exploiting well-designed intelligent reflecting surfaces (IRSs) to shape the communication channels. In this paper, we investigate how multiple IRSs affect the performance of multi-user full-duplex communication systems under hardware impairment at each node, wherein the base station (BS) and the uplink users are subject to maximum transmission power constraints. Firstly, the uplink-downlink system weighted sum-rate (SWSR) is derived which serves as a system performance metric. Then, we formulate the resource allocation design for the maximization of SWSR as an optimization problem which jointly optimizes the beamforming and the combining vectors at the BS, the transmit powers of the uplink users, and the phase shifts of multiple IRSs. Since the SWSR optimization problem is non-convex, an efficient iterative alternating approach is proposed to obtain a suboptimal solution for the design problem considered and its complexity is also discussed. In particular, we firstly reformulate the main problem into an equivalent weighted minimum mean-square-error form and then transform it into several convex sub-problems which can be analytically solved for given phase shifts. Then, the IRSs phases are optimized via a gradient ascent-based algorithm. Finally, numerical results are presented to clarify how multiple IRSs enhance the performance metric under hardware impairment.
71 - Liang Liu , Shuowen Zhang , 2018
Integrating unmanned aerial vehicles (UAVs) into the cellular network as new aerial users is a promising solution to meet their ever-increasing communication demands in a plethora of applications. Due to the high UAV altitude, the channels between UAVs and the ground base stations (GBSs) are dominated by the strong line-of-sight (LoS) links, thus severe interference may be generated to/from the GBSs in the uplink/downlink, which renders the interference management with coexisting terrestrial and aerial users a more challenging problem to solve. In this paper, we study the uplink communication from a multi-antenna UAV to a set of GBSs in its signal coverage region. Among these GBSs, we denote available GBSs as the ones that do not serve any terrestrial users at the assigned resource block (RB) of the UAV, and occupied GBSs as the rest that are serving their respectively associated terrestrial users in the same RB. We propose a new cooperative interference cancellation strategy for the multi-beam UAV uplink communication, which aims to eliminate the co-channel interference at each of the occupied GBSs and in the meanwhile maximize the sum-rate to the available GBSs. Specifically, the multi-antenna UAV sends multiple data streams to selected available GBSs, which in turn forward their decoded data streams to their backhaul-connected occupied GBSs for interference cancellation. To draw useful insights, the maximum degrees-of-freedom (DoF) achievable by the multi-beam UAV communication for sum-rate maximization in the high signal-to-noise ratio (SNR) regime is first characterized, subject to the stringent constraint that all the occupied GBSs do not suffer from any interference in the UAVs uplink transmission. Then, based on the DoF-optimal design, the achievable sum-rate at finite SNR is maximized, subject to given maximum allowable interference power constraints at each occupied GBS.
We consider a multiple-input multiple-output (MIMO) interference channel (IC), where a single data stream per user is transmitted and each receiver treats interference as noise. The paper focuses on the open problem of computing the outermost boundary (so-called Pareto boundary-PB) of the achievable rate region under linear transceiver design. The Pareto boundary consists of the strict PB and non-strict PB. For the two user case, we compute the non-strict PB and the two ending points of the strict PB exactly. For the strict PB, we formulate the problem to maximize one rate while the other rate is fixed such that a strict PB point is reached. To solve this non-convex optimization problem which results from the hard-coupled two transmit beamformers, we propose an alternating optimization algorithm. Furthermore, we extend the algorithm to the multi-user scenario and show convergence. Numerical simulations illustrate that the proposed algorithm computes a sequence of well-distributed operating points that serve as a reasonable and complete inner bound of the strict PB compared with existing methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا