No Arabic abstract
The challenges of high contrast imaging (HCI) for detecting exoplanets for both ground and space applications can be met with extreme adaptive optics (ExAO), a high-order adaptive optics system that performs wavefront sensing (WFS) and correction at high speed. We describe two ExAO optical system designs, one each for ground-based telescopes and space-based missions, and examine them using the angular spectrum Fresnel propagation module within the Physical Optics Propagation in Python (POPPY) package. We present an end-to-end (E2E) simulation of the MagAO-X instrument, an ExAO system capable of delivering 6$times10^{-5}$ visible-light raw contrast for static, noncommon path aberrations without atmosphere. We present a laser guidestar (LGS) companion spacecraft testbed demonstration, which uses a remote beacon to increase the signal available for WFS and control of the primary aperture segments of a future large space telescope, providing on order of a factor of ten factor improvement for relaxing observatory stability requirements. The LGS E2E simulation provides an easily adjustable model to explore parameters, limits, and trade-offs on testbed design and characterization.
Instrumentation techniques in the field of direct imaging of exoplanets have greatly advanced over the last two decades. Two of the four NASA-commissioned large concept studies involve a high-contrast instrument for the imaging and spectral characterization of exo-Earths from space: LUVOIR and HabEx. This whitepaper describes the status of 8 optical testbeds in the US and France currently in operation to experimentally validate the necessary technologies to image exo-Earths from space. They explore two complementary axes of research: (i) coronagraph designs and manufacturing and (ii) active wavefront correction methods and technologies. Several instrument architectures are currently being analyzed in parallel to provide more degrees of freedom for designing the future coronagraphic instruments. The necessary level of performance has already been demonstrated in-laboratory for clear off-axis telescopes (HabEx-like) and important efforts are currently in development to reproduce this accomplishment on segmented and/or on-axis telescopes (LUVOIR-like) over the next two years.
The Optimal Optical Coronagraph (OOC) Workshop held at the Lorentz Center in September 2017 in Leiden, the Netherlands, gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this second installment of a series of three papers summarizing the outcomes of the OOC workshop (see also~citenum{ruane2018,snik2018}), we present an overview of common path wavefront sensing/control and Coherent Differential Imaging techniques, highlight the latest results, and expose their relative strengths and weaknesses. We layout critical milestones for the field with the aim of enhancing future ground/space based high contrast imaging platforms. Techniques like these will help to bridge the daunting contrast gap required to image a terrestrial planet in the zone where it can retain liquid water, in reflected light around a G type star from space.
For the technology development of the mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) - a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D - we developed two test benches simulating its key components, one in air, the other in vacuum. To achieve this level of contrast, one of the main goals is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). We tested this key component, together with the coronagraph and the wavefront control, in air at NASA Ames Research Center and in vacuum at Lockheed Martin. The LOWFS, controlling tip/tilt modes in real time at 1~kHz, allowed us to reduce the disturbances in air to 1e-3 lambda/D rms, letting us achieve a contrast of 2.8e-7 between 1.2 and 2 lambda/D. Tests are currently being performed to achieve the same or a better level of correction in vacuum. With those results, and by comparing them to simulations, we are able to deduce its performances on different coronagraphs - different sizes of telescopes, inner working angles, contrasts, etc. - and therefore study its contribution beyond EXCEDE.
HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.
The success of ground-based, high contrast imaging for the detection of exoplanets in part depends on the ability to differentiate between quasi-static speckles caused by aberrations not corrected by adaptive optics (AO) systems, known as non-common path aberrations (NCPAs), and the planet intensity signal. Frazin (ApJ, 2013) introduced a post-processing algorithm demonstrating that simultaneous millisecond exposures in the science camera and wavefront sensor (WFS) can be used with a statistical inference procedure to determine both the series expanded NCPA coefficients and the planetary signal. We demonstrate, via simulation, that using this algorithm in a closed-loop AO system, real-time estimation and correction of the quasi-static NCPA is possible without separate deformable mirror (DM) probes. Thus the use of this technique allows for the removal of the quasi-static speckles that can be mistaken for planetary signals without the need for new optical hardware, improving the efficiency of ground-based exoplanet detection. In our simulations, we explore the behavior of the Frazin Algorithm (FA) and the dependence of its convergence to an accurate estimate on factors such as Strehl ratio, NCPA strength, and number of algorithm search basis functions. We then apply this knowledge to simulate running the algorithm in real-time in a nearly ideal setting. We then discuss adaptations that can be made to the algorithm to improve its real-time performance, and show their efficacy in simulation. A final simulation tests the techniques resilience against imperfect knowledge of the AO residual phase, motivating an analysis of the feasibility of using this technique in a real closed-loop Extreme AO system such as SCExAO or MagAO-X, in terms of computational complexity and the accuracy of the estimated quasi-static NCPA correction.