Do you want to publish a course? Click here

Transient thermal characterization of suspended monolayer MoS$_2$

313   0   0.0 ( 0 )
 Added by Robin Dolleman
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the thermal time constants of suspended single layer molybdenum disulfide drums by their thermomechanical response to a high-frequency modulated laser. From this measurement the thermal diffusivity of single layer MoS$_2$ is found to be 1.14 $times$ 10$^{-5}$ m$^2$/s on average. Using a model for the thermal time constants and a model assuming continuum heat transport, we extract thermal conductivities at room temperature between 10 to 40 W/(m$cdot$K). Significant device-to-device variation in the thermal diffusivity is observed. Based on statistical analysis we conclude that these variations in thermal diffusivity are caused by microscopic defects that have a large impact on phonon scattering, but do not affect the resonance frequency and damping of the membranes lowest eigenmode. By combining the experimental thermal diffusivity with literature values of the thermal conductivity, a method is presented to determine the specific heat of suspended 2D materials, which is estimated to be 255 $pm$ 104 J/(kg$cdot$K) for single layer MoS$_2$.



rate research

Read More

The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS$_2$ with AlN and SiO$_2$, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MWm$^-$$^2$K$^-$$^1$ near room temperature, increasing as ~ T$^0$$^.$$^6$$^5$ in the range 300 - 600 K. The similar TBC of MoS$_2$ with the two substrates indicates that MoS$_2$ is the softer material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. Our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.
Thermal properties of suspended single-layer graphene membranes are investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time $tau$ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled tau, a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.
Ideal monolayers of common semiconducting transition metal dichalcogenides (TMDCs) such as MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$ possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of these systems is strongly determined by defects in a way specific to each individual compound. Here we investigate the ability of exfoliated monolayers of these TMDCs to support high-quality, well-balanced ambipolar conduction, which has been demonstrated for WS$_2$, MoSe$_2$, and WSe$_2$, but not for MoS$_2$. Using ionic-liquid gated transistors we show that, contrary to WS$_2$, MoSe$_2$, and WSe$_2$, hole transport in exfoliated MoS$_2$ monolayers is systematically anomalous, exhibiting a maximum in conductivity at negative gate voltage (V$_G$) followed by a suppression of up to 100 times upon further increasing V$_G$. To understand the origin of this difference we have performed a series of experiments including the comparison of hole transport in MoS$_2$ monolayers and thicker multilayers, in exfoliated and CVD-grown monolayers, as well as gate-dependent optical measurements (Raman and photoluminescence) and scanning tunneling imaging and spectroscopy. In agreement with existing {it ab-initio} calculations, the results of all these experiments are consistently explained in terms of defects associated to chalcogen vacancies that only in MoS$_2$ monolayers -- but not in thicker MoS$_2$ multilayers nor in monolayers of the other common semiconducting TMDCs -- create in-gap states near the top of the valence band that act as strong hole traps. Our results demonstrate the importance of studying systematically how defects determine the properties of 2D semiconducting materials and of developing methods to control them.
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of the four available bands, only two are occupied. These two bands have the same spin but different valley quantum numbers. We argue that strong Coulomb interactions are a key aspect of this spontaneous symmetry breaking. The Bohr radius is so small that even electrons located far apart in phase space interact, facilitating exchange couplings to align the spins.
84 - Yao Li , G. Li , Xiaokun Zhai 2020
By pumping nonresonantly a MoS$_2$ monolayer at $13$ K under a circularly polarized cw laser, we observe exciton energy redshifts that break the degeneracy between B excitons with opposite spin. The energy splitting increases monotonically with the laser power reaching as much as $18$ meV, while it diminishes with the temperature. The phenomenon can be explained theoretically by considering simultaneously the bandgap renormalization which gives rise to the redshift and exciton-exciton Coulomb exchange interaction which is responsible for the spin-dependent splitting. Our results offer a simple scheme to control the valley degree of freedom in MoS$_2$ monolayer and provide an accessible method in investigating many-body exciton exciton interaction in such materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا