Do you want to publish a course? Click here

Immersive Virtual Reality Serious Games for Evacuation Training and Research: A Systematic Literature Review

306   0   0.0 ( 0 )
 Added by Zhenan Feng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

An appropriate and safe behavior for exiting a facility is key to reducing injuries and increasing survival when facing an emergency evacuation in a building. Knowledge on the best evacuation practice is commonly delivered by traditional training approaches such as videos, posters, or evacuation drills, but they may become ineffective in terms of knowledge acquisition and retention. Serious games (SGs) are an innovative approach devoted to training and educating people in a gaming environment. Recently, increasing attention has been paid to immersive virtual reality (IVR)-based SGs for evacuation knowledge delivery and behavior assessment because they are highly engaging and promote greater cognitive learning. This paper aims to understand the development and implementation of IVR SGs in the context of building evacuation training and research, applied to various indoor emergencies such as fire and earthquake. Thus, a conceptual framework for effective design and implementation through the systematic literature review method was developed. As a result, this framework integrates critical aspects and provides connections between them, including pedagogical and behavioral impacts, gaming environment development, and outcome and participation experience measures.



rate research

Read More

Enhancing the earthquake behavioral responses and post-earthquake evacuation preparedness of building occupants is beneficial to increasing their chances of survival and reducing casualties after the main shock of an earthquake. Traditionally, training approaches such as seminars, posters, videos or drills are applied to enhance preparedness. However, they are not highly engaging and have limited sensory capabilities to mimic life-threatening scenarios for the purpose of training potential participants. Immersive Virtual Reality (IVR) and Serious Games (SG) as innovative digital technologies can be used to create training tools to overcome these limitations. In this study, we propose an IVR SG-based training system to improve earthquake behavioral responses and post-earthquake evacuation preparedness. Auckland City Hospital was chosen as a case study to test our IVR SG training system. A set of learning outcomes based on best evacuation practice has been identified and embedded into several training scenarios of the IVR SG. Hospital staff (healthcare and administrative professionals) and visitors were recruited as participants to be exposed to these training scenarios. Participants preparedness has been measured along two dimensions: 1) Knowledge about best evacuation practice; 2) Self-efficacy in dealing with earthquake emergencies. Assessment results showed that there was a significant knowledge and self-efficacy increase after the training. And participants acknowledged that it was easy and engaging to learn best evacuation practice knowledge through the IVR SG training system.
Ethics in AI becomes a global topic of interest for both policymakers and academic researchers. In the last few years, various research organizations, lawyers, think tankers and regulatory bodies get involved in developing AI ethics guidelines and principles. However, there is still debate about the implications of these principles. We conducted a systematic literature review (SLR) study to investigate the agreement on the significance of AI principles and identify the challenging factors that could negatively impact the adoption of AI ethics principles. The results reveal that the global convergence set consists of 22 ethical principles and 15 challenges. Transparency, privacy, accountability and fairness are identified as the most common AI ethics principles. Similarly, lack of ethical knowledge and vague principles are reported as the significant challenges for considering ethics in AI. The findings of this study are the preliminary inputs for proposing a maturity model that assess the ethical capabilities of AI systems and provide best practices for further improvements.
110 - C.J. Fluke 2018
Spherical coordinate systems, which are ubiquitous in astronomy, cannot be shown without distortion on flat, two-dimensional surfaces. This poses challenges for the two complementary phases of visual exploration -- making discoveries in data by looking for relationships, patterns or anomalies -- and publication -- where the results of an exploration are made available for scientific scrutiny or communication. This is a long-standing problem, and many practical solutions have been developed. Our allskyVR approach provides a workflow for experimentation with commodity virtual reality head-mounted displays. Using the free, open source S2PLOT programming library, and the A-Frame WebVR browser-based framework, we provide a straightforward way to visualise all-sky catalogues on a user-centred, virtual celestial sphere. The allskyVR distribution contains both a quickstart option, complete with a gaze-based menu system, and a fully customisable mode for those who need more control of the immersive experience. The software is available for download from: https://github.com/cfluke/allskyVR
Enhancing evacuee safety is a key factor in reducing the number of injuries and deaths that result from earthquakes. One way this can be achieved is by training occupants. Virtual Reality (VR) and Serious Games (SGs), represent novel techniques that may overcome the limitations of traditional training approaches. VR and SGs have been examined in the fire emergency context, however, their application to earthquake preparedness has not yet been extensively examined. We provide a theoretical discussion of the advantages and limitations of using VR SGs to investigate how building occupants behave during earthquake evacuations and to train building occupants to cope with such emergencies. We explore key design components for developing a VR SG framework: (a) what features constitute an earthquake event, (b) which building types can be selected and represented within the VR environment, (c) how damage to the building can be determined and represented, (d) how non-player characters (NPC) can be designed, and (e) what level of interaction there can be between NPC and the human participants. We illustrate the above by presenting the Auckland City Hospital, New Zealand as a case study, and propose a possible VR SG training tool to enhance earthquake preparedness in public buildings.
Effective data visualization is a key part of the discovery process in the era of big data. It is the bridge between the quantitative content of the data and human intuition, and thus an essential component of the scientific path from data into knowledge and understanding. Visualization is also essential in the data mining process, directing the choice of the applicable algorithms, and in helping to identify and remove bad data from the analysis. However, a high complexity or a high dimensionality of modern data sets represents a critical obstacle. How do we visualize interesting structures and patterns that may exist in hyper-dimensional data spaces? A better understanding of how we can perceive and interact with multi dimensional information poses some deep questions in the field of cognition technology and human computer interaction. To this effect, we are exploring the use of immersive virtual reality platforms for scientific data visualization, both as software and inexpensive commodity hardware. These potentially powerful and innovative tools for multi dimensional data visualization can also provide an easy and natural path to a collaborative data visualization and exploration, where scientists can interact with their data and their colleagues in the same visual space. Immersion provides benefits beyond the traditional desktop visualization tools: it leads to a demonstrably better perception of a datascape geometry, more intuitive data understanding, and a better retention of the perceived relationships in the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا