Do you want to publish a course? Click here

Extended Abstract: Mimicry Resilient Program Behavior Modeling with LSTM based Branch Models

101   0   0.0 ( 0 )
 Added by Hayoon Yi
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In the software design, protecting a computer system from a plethora of software attacks or malware in the wild has been increasingly important. One branch of research to detect the existence of attacks or malware, there has been much work focused on modeling the runtime behavior of a program. Stemming from the seminal work of Forrest et al., one of the main tools to model program behavior is system call sequences. Unfortunately, however, since mimicry attacks were proposed, program behavior models based solely on system call sequences could no longer ensure the security of systems and require additional information that comes with its own drawbacks. In this paper, we report our preliminary findings in our research to build a mimicry resilient program behavior model that has lesser drawbacks. We employ branch sequences to harden our program behavior model against mimicry attacks while employing hardware features for efficient extraction of such branch information during program runtime. In order to handle the large scale of branch sequences, we also employ LSTM, the de facto standard in deep learning based sequence modeling and report our preliminary experiments on its interaction with program branch sequences.



rate research

Read More

263 - Joseph Y. Halpern 2017
While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple logic based on the well-understood modal operators of knowledge, time, and probability, and show that it is able to handle issues that have often been swept under the rug by other approaches, while being flexible enough to capture all the higher- level security notions that appear in BAN logic. Moreover, while still assuming that the knowledge operator allows for unbounded computation, it can handle the fact that a computationally bounded agent cannot decrypt messages in a natural way, by distinguishing strings and message terms. We demonstrate that our logic can capture BAN logic notions by providing a translation of the BAN operators into our logic, capturing belief by a form of probabilistic knowledge.
Existing approaches to cyber security and regulation in the automotive sector cannot achieve the quality of outcome necessary to ensure the safe mass deployment of advanced vehicle technologies and smart mobility systems. Without sustainable resilience hard-fought public trust will evaporate, derailing emerging global initiatives to improve the efficiency, safety and environmental impact of future transport. This paper introduces an operational cyber resilience methodology, CyRes, that is suitable for standardisation. The CyRes methodology itself is capable of being tested in court or by publicly appointed regulators. It is designed so that operators understand what evidence should be produced by it and are able to measure the quality of that evidence. The evidence produced is capable of being tested in court or by publicly appointed regulators. Thus, the real-world system to which the CyRes methodology has been applied is capable of operating at all times and in all places with a legally and socially acceptable value of negative consequence.
Language models (LMs) based on Long Short Term Memory (LSTM) have shown good gains in many automatic speech recognition tasks. In this paper, we extend an LSTM by adding highway networks inside an LSTM and use the resulting Highway LSTM (HW-LSTM) model for language modeling. The added highway networks increase the depth in the time dimension. Since a typical LSTM has two internal states, a memory cell and a hidden state, we compare various types of HW-LSTM by adding highway networks onto the memory cell and/or the hidden state. Experimental results on English broadcast news and conversational telephone speech recognition show that the proposed HW-LSTM LM improves speech recognition accuracy on top of a strong LSTM LM baseline. We report 5.1% and 9.9% on the Switchboard and CallHome subsets of the Hub5 2000 evaluation, which reaches the best performance numbers reported on these tasks to date.
Observational models make tractable the analysis of information flow properties by providing an abstraction of side channels. We introduce a methodology and a tool, Scam-V, to validate observational models for modern computer architectures. We combine symbolic execution, relational analysis, and different program generation techniques to generate experiments and validate the models. An experiment consists of a randomly generated program together with two inputs that are observationally equivalent according to the model under the test. Validation is done by checking indistinguishability of the two inputs on real hardware by executing the program and analyzing the side channel. We have evaluated our framework by validating models that abstract the data-cache side channel of a Raspberry Pi 3 board with a processor implementing the ARMv8-A architecture. Our results show that Scam-V can identify bugs in the implementation of the models and generate test programs which invalidate the models due to hidden microarchitectural behavior.
In cloud and edge computing models, it is important that compute devices at the edge be as power efficient as possible. Long short-term memory (LSTM) neural networks have been widely used for natural language processing, time series prediction and many other sequential data tasks. Thus, for these applications there is increasing need for low-power accelerators for LSTM model inference at the edge. In order to reduce power dissipation due to data transfers within inference devices, there has been significant interest in accelerating vector-matrix multiplication (VMM) operations using non-volatile memory (NVM) weight arrays. In NVM array-based hardware, reduced bit-widths also significantly increases the power efficiency. In this paper, we focus on the application of quantization-aware training algorithm to LSTM models, and the benefits these models bring in terms of resilience against both quantization error and analog device noise. We have shown that only 4-bit NVM weights and 4-bit ADC/DACs are needed to produce equivalent LSTM network performance as floating-point baseline. Reasonable levels of ADC quantization noise and weight noise can be naturally tolerated within our NVMbased quantized LSTM network. Benchmark analysis of our proposed LSTM accelerator for inference has shown at least 2.4x better computing efficiency and 40x higher area efficiency than traditional digital approaches (GPU, FPGA, and ASIC). Some other novel approaches based on NVM promise to deliver higher computing efficiency (up to 4.7x) but require larger arrays with potential higher error rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا