No Arabic abstract
While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple logic based on the well-understood modal operators of knowledge, time, and probability, and show that it is able to handle issues that have often been swept under the rug by other approaches, while being flexible enough to capture all the higher- level security notions that appear in BAN logic. Moreover, while still assuming that the knowledge operator allows for unbounded computation, it can handle the fact that a computationally bounded agent cannot decrypt messages in a natural way, by distinguishing strings and message terms. We demonstrate that our logic can capture BAN logic notions by providing a translation of the BAN operators into our logic, capturing belief by a form of probabilistic knowledge.
This paper shows that conditional independence reasoning can be applied to optimize epistemic model checking, in which one verifies that a model for a number of agents operating with imperfect information satisfies a formula expressed in a modal multi-agent logic of knowledge. The optimization has been implemented in the epistemic model checker MCK. The paper reports experimental results demonstrating that it can yield multiple orders of magnitude performance improvements.
As quantum computers become real, it is high time we come up with effective techniques that help programmers write correct quantum programs. In classical computing, formal verification and sound static type systems prevent several classes of bugs from being introduced. There is a need for similar techniques in the quantum regime. Inspired by Hoare Type Theory in the classical paradigm, we propose Quantum Hoare Types by extending the Quantum IO Monad by indexing it with pre- and post-conditions that serve as program specifications. In this paper, we introduce Quantum Hoare Type Theory (QHTT), present its syntax and typing rules, and demonstrate its effectiveness with the help of examples. QHTT has the potential to be a unified system for programming, specifying, and reasoning about quantum programs. This is a work in progress.
The existence of a coalition strategy to achieve a goal does not necessarily mean that the coalition has enough information to know how to follow the strategy. Neither does it mean that the coalition knows that such a strategy exists. The paper studies an interplay between the distributed knowledge, coalition strategies, and coalition know-how strategies. The main technical result is a sound and complete trimodal logical system that describes the properties of this interplay.
This thesis describes the theoretical and practical foundations of a system for the static analysis of XML processing languages. The system relies on a fixpoint temporal logic with converse, derived from the mu-calculus, where models are finite trees. This calculus is expressive enough to capture regular tree types along with multi-directional navigation in trees, while having a single exponential time complexity. Specifically the decidability of the logic is proved in time 2^O(n) where n is the size of the input formula. Major XML concepts are linearly translated into the logic: XPath navigation and node selection semantics, and regular tree languages (which include DTDs and XML Schemas). Based on these embeddings, several problems of major importance in XML applications are reduced to satisfiability of the logic. These problems include XPath containment, emptiness, equivalence, overlap, coverage, in the presence or absence of regular tree type constraints, and the static type-checking of an annotated query. The focus is then given to a sound and complete algorithm for deciding the logic, along with a detailed complexity analysis, and crucial implementation techniques for building an effective solver. Practical experiments using a full implementation of the system are presented. The system appears to be efficient in practice for several realistic scenarios. The main application of this work is a new class of static analyzers for programming languages using both XPath expressions and XML type annotations (input and output). Such analyzers allow to ensure at compile-time valuable properties such as type-safety and optimizations, for safer and more efficient XML processing.
Gossip protocols aim at arriving, by means of point-to-point or group communications, at a situation in which all the agents know each others secrets. We consider distributed gossip protocols which are expressed by means of epistemic logic. We provide an operational semantics of such protocols and set up an appropriate framework to argue about their correctness. Then we analyze specific protocols for complete graphs and for directed rings.