Do you want to publish a course? Click here

Dynamic Morphologies and Stability of Droplet Interface Bilayers

57   0   0.0 ( 0 )
 Added by Halim Kusumaatmaja
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a theoretical framework for understanding dynamic morphologies and stability of droplet interface bilayers (DIBs), accounting for lipid kinetics in the monolayers and bilayer, and droplet evaporation due to imbalance between osmotic and Laplace pressures. Our theory quantitatively describes distinct pathways observed in experiments when DIBs become unstable. We find that when the timescale for lipid desorption is slow compared to droplet evaporation, the lipid bilayer will grow and the droplets approach a hemispherical shape. In contrast, when lipid desorption is fast, the bilayer area will shrink and the droplets eventually detach. Our model also suggests there is a critical size below which DIBs cannot be stable, which may explain experimental difficulties in miniaturising the DIB platform.



rate research

Read More

101 - Chiu Fan Lee 2015
Minimal models of self-propelled particles with short-range volume exclusion interactions have been shown to exhibit signatures of phase separation. Here I show that the observed interfacial stability and fluctuations in motility-induced phase separations (MIPS) can be explained by modeling the microscopic dynamics of the active particles in the interfacial region. In addition, I demonstrate the validity of the Gibbs-Thomson relation in MIPS, which provides a functional relationship between the size of a condensed drop and its surrounding vapor concentration. As a result, the coarsening dynamics of MIPS at vanishing supersaturation follows the classic Lifshitz-Slyozov scaling law at the late stage.
Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research due to implications for cellular viability and development of artificial cells. In this manuscript we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modeling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius, along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analyzing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising of the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.
Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.
We investigate mucosalivary dispersal and deposition on horizontal surfaces corresponding to human exhalations with physical experiments under still-air conditions. Synthetic fluorescence tagged sprays with size and speed distributions comparable to human sneezes are observed with high-speed imaging. We show that while some larger droplets follow parabolic trajectories, smaller droplets stay aloft for several seconds and settle slowly with speeds consistent with a buoyant cloud dynamics model. The net deposition distribution is observed to become correspondingly broader as the source height $H$ is increased, ranging from sitting at a table to standing upright. We find that the deposited mucosaliva decays exponentially in front of the source, after peaking at distance $x = 0.71$,m when $H = 0.5$,m, and $x = 0.56$,m when $H=1.5$,m, with standard deviations $approx 0.5$,m. Greater than 99% of the mucosaliva is deposited within $x = 2$,m, with faster landing times {em further} from the source. We then demonstrate that a standard nose and mouth mask reduces the mucosaliva dispersed by a factor of at least a hundred compared to the peaks recorded when unmasked.
While a significant body of investigations have been focused on the process of protein self-assembly, much less is understood about the reverse process of a filament breaking due to thermal motion into smaller fragments, or depolymerization of subunits from the filament ends. Indirect evidence for actin and amyloid filament fragmentation has been reported, although the phenomenon has never been directly observed either experimentally or in simulations. Here we report the direct observation of filament depolymerization and breakup in a minimal, calibrated model of coarse-grained molecular simulation. We quantify the orders of magnitude by which the depolymerization rate from the filament ends $k_mathrm{off}$ is larger than fragmentation rate $k_{-}$ and establish the law $k_mathrm{off}/k_- = exp [( varepsilon_| - varepsilon_bot) / k_mathrm{B}T ] = exp [0.5 varepsilon / k_mathrm{B}T ]$, which accounts for the topology and energy of bonds holding the filament together. This mechanism and the order-of-magnitude predictions are well supported by direct experimental measurements of depolymerization of insulin amyloid filaments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا