No Arabic abstract
To reveal the nature of elementary excitations in a quantum spin liquid (QSL), we measured low temperature thermal conductivity and specific heat of 1T-TaS$_2$, a QSL candidate material with frustrated triangular lattice of spin-1/2. The nonzero temperature linear specific heat coefficient $gamma$ and the finite residual linear term of the thermal conductivity in the zero temperature limit $kappa_0/T=kappa/T(Trightarrow 0)$ are clearly resolved. This demonstrates the presence of highly mobile gapless excitations, which is consistent with fractionalized spinon excitations that form a Fermi surface. Remarkably, an external magnetic field strongly suppresses $gamma$, whereas it enhances $kappa_0/T$. This unusual contrasting behavior in the field dependence of specific heat and thermal conductivity can be accounted for by the presence of two types of gapless excitations with itinerant and localized characters, as recently predicted theoretically (I. Kimchi et al., arXiv:1803.00013 (2018)). This unique feature of 1T-TaS$_2$ provides new insights into the influence of quenched disorder on the QSL.
1T-TaS$_2$ is a layered transition metal dichalgeonide with a very rich phase diagram. At T=180K it undergoes a metal to Mott insulator transition. Mott insulators usually display anti-ferromagnetic ordering in the insulating phase but 1T-TaS$_2$ was never shown to order magnetically. In this letter we show that 1T-TaS$_2$ has a large paramagnetic contribution to the magnetic susceptibility but it does not show any sign of magnetic ordering or freezing down to 20mK, as probed by $mu$SR, possibly indicating a quantum spin liquid ground state. Although 1T-TaS$_2$ exhibits a strong resistive behavior both in and out-of plane at low temperatures we find a linear term in the heat capacity suggesting the existence of a Fermi-surface, which has an anomalously strong magnetic field dependence.
EtMe$_3$Sb[Pd(dmit)$_2$]$_2$, an organic Mott insulator with nearly isotropic triangular lattice, is a candidate material for a quantum spin liquid, in which the zero-point fluctuations do not allow the spins to order. The itinerant gapless excitations inferred from the thermal transport measurements in this system have been a hotly debated issue recently. While the presence of a finite linear residual thermal conductivity, $kappa_0/T equiv kappa/T (T rightarrow 0)$, has been shown [M. Yamashita {it et al.} Science {bf 328}, 1246 (2010)], recent experiments [P. Bourgeois-Hope {it et al.}, Phys. Rev. X {bf 9}, 041051 (2019); J. M. Ni {it et al.}, Phys. Rev. Lett. {bf 123}, 247204 (2019)] have reported the absence of $kappa_0/T$. Here we show that the low-temperature thermal conductivity strongly depends on the cooling process of the sample. When cooling down very slowly, a sizable $kappa_0/T$ is observed. In contrast, when cooling down rapidly, $kappa_0/T$ vanishes and, in addition, the phonon thermal conductivity is strongly suppressed. These results suggest that possible random scatterers introduced during the cooling process are responsible for the apparent discrepancy of the thermal conductivity data in this organic system. The present results provide evidence that the true ground state of EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ is likely to be a quantum spin liquid with itinerant gapless excitations.
A quantum spin liquid (QSL) is an exotic state of matter characterized by quantum entanglement and the absence of any broken symmetry. A long-standing open problem, which is a key for fundamental understanding the mysterious QSL states, is how the quantum fluctuations respond to randomness due to quenched disorder. Transition metal dichalcogenide 1T-TaS$_2$ is a candidate material that hosts a QSL ground state with spin-1/2 on the two-dimensional perfect triangular lattice. Here, we performed systematic studies of low-temperature heat capacity and thermal conductivity on pure, Se-substituted and electron irradiated crystals of 1T-TaS$_2$. In pure 1T-TaS$_2$, the linear temperature term of the heat capacity $gamma T$ and the finite residual linear term of the thermal conductivity in the zero-temperature limit $kappa_{0}/Tequivkappa/T(Trightarrow0)$ are clearly resolved, consistent with the presence of gapless spinons with a Fermi surface. Moreover, while the strong magnetic field slightly enhances $kappa_0/T$, it strongly suppresses $gamma$. These unusual contrasting responses to magnetic field imply the coexistence of two types of gapless excitations with itinerant and localized characters. Introduction of additional weak random exchange disorder in 1T-Ta(S$_{1-x}$Se$_x$)$_2$ leads to vanishing of $kappa_0/T$, indicating that the itinerant gapless excitations are sensitive to the disorder. On the other hand, in both pure and Se-substituted systems, the magnetic contribution of the heat capacity obeys a universal scaling relation, which is consistent with a theory that assumes the presence of localized orphan spins forming random singlets. Electron irradiation in pure 1T-TaS$_2$ largely enhances $gamma$ and changes the scaling function dramatically, suggesting a possible new state of spin liquid.
The type-II terminated 1T-TaS$_2$ surface of a three-dimensional 1T-TaS$_2$ bulk material realizes the effective spin-1/2 degree of freedom on each David-star cluster with ${T^2=-1}$ such that the time reversal symmetry is realized anomalously, despite the bulk three-dimensional 1T-TaS$_2$ material has an even number of electrons per unit cell with ${T^2=+1}$. This surface is effectively viewed as a spin-1/2 triangular lattice magnet, except with a symmetry-protected topological bulk. We further propose this surface termination realizes a spinon Fermi surface spin liquid with the surface fractionalization but with a non-exotic three-dimensional bulk. We analyze possible experimental consequences of the type-II terminated surface spin liquid.
A family of spin-orbit coupled honeycomb Mott insulators offers a playground to search for quantum spin liquids (QSLs) via bond-dependent interactions. In candidate materials, a symmetric off-diagonal $Gamma$ term, close cousin of Kitaev interaction, has emerged as another source of frustration that is essential for complete understanding of these systems. However, the ground state of honeycomb $Gamma$ model remains elusive, with a suggested zigzag magnetic order. Here we attempt to resolve the puzzle by perturbing the $Gamma$ region with a staggered Heisenberg interaction which favours the zigzag ordering. Despite such favour, we find a wide disordered region inclusive of the $Gamma$ limit in the phase diagram. Further, this phase exhibits a vanishing energy gap, a collapse of excitation spectrum, and a logarithmic entanglement entropy scaling on long cylinders, indicating a gapless QSL. Other quantities such as plaquette-plaquette correlation are also discussed.