Do you want to publish a course? Click here

Effect of quenched disorder on a quantum spin liquid state of triangular-lattice antiferromagnet 1T-TaS$_2$

118   0   0.0 ( 0 )
 Added by Yuichi Kasahara
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum spin liquid (QSL) is an exotic state of matter characterized by quantum entanglement and the absence of any broken symmetry. A long-standing open problem, which is a key for fundamental understanding the mysterious QSL states, is how the quantum fluctuations respond to randomness due to quenched disorder. Transition metal dichalcogenide 1T-TaS$_2$ is a candidate material that hosts a QSL ground state with spin-1/2 on the two-dimensional perfect triangular lattice. Here, we performed systematic studies of low-temperature heat capacity and thermal conductivity on pure, Se-substituted and electron irradiated crystals of 1T-TaS$_2$. In pure 1T-TaS$_2$, the linear temperature term of the heat capacity $gamma T$ and the finite residual linear term of the thermal conductivity in the zero-temperature limit $kappa_{0}/Tequivkappa/T(Trightarrow0)$ are clearly resolved, consistent with the presence of gapless spinons with a Fermi surface. Moreover, while the strong magnetic field slightly enhances $kappa_0/T$, it strongly suppresses $gamma$. These unusual contrasting responses to magnetic field imply the coexistence of two types of gapless excitations with itinerant and localized characters. Introduction of additional weak random exchange disorder in 1T-Ta(S$_{1-x}$Se$_x$)$_2$ leads to vanishing of $kappa_0/T$, indicating that the itinerant gapless excitations are sensitive to the disorder. On the other hand, in both pure and Se-substituted systems, the magnetic contribution of the heat capacity obeys a universal scaling relation, which is consistent with a theory that assumes the presence of localized orphan spins forming random singlets. Electron irradiation in pure 1T-TaS$_2$ largely enhances $gamma$ and changes the scaling function dramatically, suggesting a possible new state of spin liquid.



rate research

Read More

Rare-earth delafossites were recently proposed as promising candidates for the realization of an effective $S$=1/2 quantum spin liquid (QSL) on the triangular lattice. In contrast to the most actively studied triangular-lattice antiferromagnet YbMgGaO$_4$, which is known for considerable structural disorder due to site intermixing, NaYbS$_2$ delafossite realizes structurally ideal triangular layers. We present detailed $mu$SR studies on this regular (undistorted) triangular Yb sublattice based system with effective spin $J_{mathrm{eff}}=1/2$ in the temperature range 0.05 - 40 K. Zero-field (ZF) and longitudinal field (LF) $mu$SR studies confirm the absence of any long range magnetic order state down to 0.05K ($sim J$/80). Current $mu$SR results together with the so far available bulk characterization data suggest that NaYbS$_2$ is an ideal candidate to identify QSL ground state.
We present the structural characterization and low-temperature magnetism of the triangular-lattice delafossite NaYbO$_2$. Synchrotron x-ray diffraction and neutron scattering exclude both structural disorder and crystal-electric-field randomness, whereas heat-capacity measurements and muon spectroscopy reveal the absence of magnetic order and persistent spin dynamics down to at least 70,mK. Continuous magnetic excitations with the low-energy spectral weight accumulating at the $K$-point of the Brillouin zone indicate the formation of a novel spin-liquid phase in a triangular antiferromagnet. This phase is gapless and shows a non-trivial evolution of the low-temperature specific heat. Our work demonstrates that NaYbO$_2$ practically gives the most direct experimental access to the spin-liquid physics of triangular antiferromagnets.
New theoretical proposals and experimental findings on transition metal dichalcogenide 1T-TaS$_2$ have revived interests in its possible Mott insulating state. We perform a comprehensive scanning tunneling microscopy and spectroscopy experiment on different single-step areas in pristine 1T-TaS$_2$. After accurately determining the relative displacement of Star-of-David super-lattices in two layers, we find different stacking orders corresponding to the different electronic states measured on the upper terrace. The center-to-center stacking corresponds to the universal large gap, while other stacking orders correspond to a reduced or suppressed gap in the electronic spectrum. Adopting a unified model, we conclude that the universal large gap is a correlation-induced Mott gap from the single-layer property. Our work provides more evidence about the surface electronic state and deepens our understanding of the Mott insulating state in 1T-TaS$_2$.
Triangular lattice of rare-earth ions with interacting effective spin-$1/2$ local moments is an ideal platform to explore the physics of quantum spin liquids (QSLs) in the presence of strong spin-orbit coupling, crystal electric fields, and geometrical frustration. The Yb delafossites, NaYbCh$_2$ (Ch=O, S, Se) with Yb ions forming a perfect triangular lattice, have been suggested to be candidates for QSLs. Previous thermodynamics, nuclear magnetic resonance, and muon spin rotation measurements on NaYbCh$_2$ have supported the suggestion of the QSL ground states. The key signature of a QSL, the spin excitation continuum, arising from the spin quantum number fractionalization, has not been observed. Here we perform both elastic and inelastic neutron scattering measurements as well as detailed thermodynamic measurements on high-quality single-crystalline NaYbSe$_2$ samples to confirm the absence of long-range magnetic order down to 40 mK, and further reveal a clear signature of magnetic excitation continuum extending from 0.1 to 2.5 meV. The comparison between the structure of the magnetic excitation spectra and the theoretical expectation from the spinon continuum suggests that the ground state of NaYbSe$_2$ is a QSL with a spinon Fermi surface.
397 - H. Murayama , Y. Sato , X. Z. Xing 2018
To reveal the nature of elementary excitations in a quantum spin liquid (QSL), we measured low temperature thermal conductivity and specific heat of 1T-TaS$_2$, a QSL candidate material with frustrated triangular lattice of spin-1/2. The nonzero temperature linear specific heat coefficient $gamma$ and the finite residual linear term of the thermal conductivity in the zero temperature limit $kappa_0/T=kappa/T(Trightarrow 0)$ are clearly resolved. This demonstrates the presence of highly mobile gapless excitations, which is consistent with fractionalized spinon excitations that form a Fermi surface. Remarkably, an external magnetic field strongly suppresses $gamma$, whereas it enhances $kappa_0/T$. This unusual contrasting behavior in the field dependence of specific heat and thermal conductivity can be accounted for by the presence of two types of gapless excitations with itinerant and localized characters, as recently predicted theoretically (I. Kimchi et al., arXiv:1803.00013 (2018)). This unique feature of 1T-TaS$_2$ provides new insights into the influence of quenched disorder on the QSL.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا