Do you want to publish a course? Click here

Multivariate approximations in Wasserstein distance by Steins method and Bismuts formula

96   0   0.0 ( 0 )
 Added by Lihu Xu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Steins method has been widely used for probability approximations. However, in the multi-dimensional setting, most of the results are for multivariate normal approximation or for test functions with bounded second- or higher-order derivatives. For a class of multivariate limiting distributions, we use Bismuts formula in Malliavin calculus to control the derivatives of the Stein equation solutions by the first derivative of the test function. Combined with Steins exchangeable pair approach, we obtain a general theorem for multivariate approximations with near optimal error bounds on the Wasserstein distance.We apply the theorem to the unadjusted Langevin algorithm.



rate research

Read More

255 - Ivan Nourdin 2008
We combine Steins method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by Peccati and Tudor (2005), Nualart and Ortiz-Latorre (2007), Peccati (2007) and Nourdin and Peccati (2007b, 2008); in particular, they apply to approximations by means of Gaussian vectors with an arbitrary, positive definite covariance matrix. Among several examples, we provide an application to a functional version of the Breuer-Major CLT for fields subordinated to a fractional Brownian motion.
127 - Xiao Fang , Yuta Koike 2020
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a sum of $n$ locally dependent random vectors. We assume the approximating normal distribution has a non-singular covariance matrix. The error bounds vanish even when the dimension $d$ is much larger than the sample size $n$. We prove our main results using the approach of Gotze (1991) in Steins method, together with modifications of an estimate of Anderson, Hall and Titterington (1998) and a smoothing inequality of Bhattacharya and Rao (1976). For sums of $n$ independent and identically distributed isotropic random vectors having a log-concave density, we obtain an error bound that is optimal up to a $log n$ factor. We also discuss an application to multiple Wiener-It^{o} integrals.
354 - John Pike , Haining Ren 2012
Using Steins method techniques, we develop a framework which allows one to bound the error terms arising from approximation by the Laplace distribution and apply it to the study of random sums of mean zero random variables. As a corollary, we deduce a Berry-Esseen type theorem for the convergence of certain geometric sums. Our results make use of a second order characterizing equation and a distributional transformation which is related to zero-biasing.
In this paper we establish a framework for normal approximation for white noise functionals by Steins method and Hida calculus. Our work is inspired by that of Nourdin and Peccati (Probab. Theory Relat. Fields 145, 75-118, 2009), who combined Steins method and Malliavin calculus for normal approximation for functionals of Gaussian processes.
We consider a general preferential attachment model, where the probability that a newly arriving vertex connects to an older vertex is proportional to a sublinear function of the indegree of the older vertex at that time. It is well known that the distribution of a uniformly chosen vertex converges to a limiting distribution. Depending on the parameters, this model can show power law, but also stretched exponential behaviour. Using Steins method we provide rates of convergence for the total variation distance. Our proof uses the fact that the limiting distribution is the stationary distribution of a Markov chain together with the generator method of Barbour.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا