Do you want to publish a course? Click here

Multivariate normal approximation using Steins method and Malliavin calculus

255   0   0.0 ( 0 )
 Added by Ivan Nourdin
 Publication date 2008
  fields
and research's language is English
 Authors Ivan Nourdin




Ask ChatGPT about the research

We combine Steins method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by Peccati and Tudor (2005), Nualart and Ortiz-Latorre (2007), Peccati (2007) and Nourdin and Peccati (2007b, 2008); in particular, they apply to approximations by means of Gaussian vectors with an arbitrary, positive definite covariance matrix. Among several examples, we provide an application to a functional version of the Breuer-Major CLT for fields subordinated to a fractional Brownian motion.



rate research

Read More

In this paper we establish a framework for normal approximation for white noise functionals by Steins method and Hida calculus. Our work is inspired by that of Nourdin and Peccati (Probab. Theory Relat. Fields 145, 75-118, 2009), who combined Steins method and Malliavin calculus for normal approximation for functionals of Gaussian processes.
124 - Mahmoud Khabou 2021
In this paper, we provide upper bounds on the d2 distance between a large class of functionals of a multivariate compound Hawkes process and a given Gaussian vector. This is proven using Malliavins calculus defined on an underlying Poisson embedding. The upper bound is then used to infer the speed of convergence of Central Limit Theorems for the multivariate compound Hawkes process with exponential kernels as the observation time T goes to infinity.
95 - Xiao Fang , Qi-Man Shao , Lihu Xu 2018
Steins method has been widely used for probability approximations. However, in the multi-dimensional setting, most of the results are for multivariate normal approximation or for test functions with bounded second- or higher-order derivatives. For a class of multivariate limiting distributions, we use Bismuts formula in Malliavin calculus to control the derivatives of the Stein equation solutions by the first derivative of the test function. Combined with Steins exchangeable pair approach, we obtain a general theorem for multivariate approximations with near optimal error bounds on the Wasserstein distance.We apply the theorem to the unadjusted Langevin algorithm.
Suppose that ${u(t,, x)}_{t >0, x inmathbb{R}^d}$ is the solution to a $d$-dimensional stochastic heat equation driven by a Gaussian noise that is white in time and has a spatially homogeneous covariance that satisfies Dalangs condition. The purpose of this paper is to establish quantitative central limit theorems for spatial averages of the form $N^{-d} int_{[0,N]^d} g(u(t,,x)), mathrm{d} x$, as $Nrightarrowinfty$, where $g$ is a Lipschitz-continuous function or belongs to a class of locally-Lipschitz functions, using a combination of the Malliavin calculus and Steins method for normal approximations. Our results include a central limit theorem for the {it Hopf-Cole} solution to KPZ equation. We also establish a functional central limit theorem for these spatial averages.
354 - John Pike , Haining Ren 2012
Using Steins method techniques, we develop a framework which allows one to bound the error terms arising from approximation by the Laplace distribution and apply it to the study of random sums of mean zero random variables. As a corollary, we deduce a Berry-Esseen type theorem for the convergence of certain geometric sums. Our results make use of a second order characterizing equation and a distributional transformation which is related to zero-biasing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا