No Arabic abstract
With many large science equipment constructing and putting into use, astronomy has stepped into the big data era. The new method and infrastructure of big data processing has become a new requirement of many astronomers. Cloud computing, Map/Reduce, Hadoop, Spark, etc. many new technology has sprung up in recent years. Comparing to the high performance computing(HPC), Data is the center of these new technology. So, a new computing architecture infrastructure is necessary, which can be shared by both HPC and big data processing. Based on Astronomy Cloud project of Chinese Virtual Observatory (China-VO), we have made much efforts to optimize the designation of the hybrid computing platform. which include the hardware architecture, cluster management, Job and Resource scheduling.
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites, and advanced applications for specific scientific purposes, such as a connection to robotic telescopes. We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
In the era of Internet of Things and with the explosive worldwide growth of electronic data volume, and associated need of processing, analysis, and storage of such humongous volume of data, it has now become mandatory to exploit the power of massively parallel architecture for fast computation. Cloud computing provides a cheap source of such computing framework for large volume of data for real-time applications. It is, therefore, not surprising to see that cloud computing has become a buzzword in the computing fraternity over the last decade. This book presents some critical applications in cloud frameworks along with some innovation design of algorithms and architecture for deployment in cloud environment. It is a valuable source of knowledge for researchers, engineers, practitioners, and graduate and doctoral students working in the field of cloud computing. It will also be useful for faculty members of graduate schools and universities.
The in-memory cache system is an important component in a cloud for the data access performance. As the tenants may have different performance goals for data access depending on the nature of their tasks, effectively managing the memory cache is a crucial concern in such a shared computing environment. Two extreme methods for managing the memory cache are unlimited sharing and complete isolation, both of which would be inefficient with the expensive storage complexity to meet the per-tenant performance requirement. In this paper, we present a new cache model that incorporates global caching (based on unlimited sharing) and static caching (offering complete isolation) for a private cloud, in which it is critical to offer the guaranteed performance while minimizing the operating cost. This paper also presents a cache insertion algorithm tailored to the proposed cache model. From an extensive set of experiments conducted on the simulation and emulation settings, the results confirm the validity of the presented cache architecture and insertion algorithm showing the optimized use of the cache space for meeting the per-tenant performance requirement.
This paper describes a programme to study the computing model in CMS after the next long shutdown near the end of the decade.
The smart health paradigms employ Internet-connected wearables for telemonitoring, diagnosis for providing inexpensive healthcare solutions. Fog computing reduces latency and increases throughput by processing data near the body sensor network. In this paper, we proposed a secure serviceorientated edge computing architecture that is validated on recently released public dataset. Results and discussions support the applicability of proposed architecture for smart health applications. We proposed SoA-Fog i.e. a three-tier secure framework for efficient management of health data using fog devices. It discuss the security aspects in client layer, fog layer and the cloud layer. We design the prototype by using win-win spiral model with use case and sequence diagram. Overlay analysis was performed using proposed framework on malaria vector borne disease positive maps of Maharastra state in India from 2011 to 2014. The mobile clients were taken as test case. We performed comparative analysis between proposed secure fog framework and state-of-the art cloud-based framework.