Common and community software packages, such as ROOT, Geant4 and event generators have been a key part of the LHCs success so far and continued development and optimisation will be critical in the future. The challenges are driven by an ambitious physics programme, notably the LHC accelerator upgrade to high-luminosity, HL-LHC, and the corresponding detector upgrades of ATLAS and CMS. In this document we address the issues for software that is used in multiple experiments (usually even more widely than ATLAS and CMS) and maintained by teams of developers who are either not linked to a particular experiment or who contribute to common software within the context of their experiment activity. We also give space to general considerations for future software and projects that tackle upcoming challenges, no matter who writes it, which is an area where community convergence on best practice is extremely useful.
The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3 ab$^{-1}$. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15 ab$^{-1}$, is also discussed.
In the era of Internet of Things and with the explosive worldwide growth of electronic data volume, and associated need of processing, analysis, and storage of such humongous volume of data, it has now become mandatory to exploit the power of massively parallel architecture for fast computation. Cloud computing provides a cheap source of such computing framework for large volume of data for real-time applications. It is, therefore, not surprising to see that cloud computing has become a buzzword in the computing fraternity over the last decade. This book presents some critical applications in cloud frameworks along with some innovation design of algorithms and architecture for deployment in cloud environment. It is a valuable source of knowledge for researchers, engineers, practitioners, and graduate and doctoral students working in the field of cloud computing. It will also be useful for faculty members of graduate schools and universities.
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHCs flavour physics potential throughout its upgrade eras.
The demanding beam performance requirements of the High Luminosity (HL-) LHC project translate into a set of requirements and upgrade paths for the LHC injector complex. In this paper the performance requirements for the SPS and the known limitations are reviewed in the light of the 2012 operational experience. The various SPS upgrades in progress and still under consideration are described, in addition to the machine studies and simulations performed in 2012. The expected machine performance reach is estimated on the basis of the present knowledge, and the remaining decisions that still need to be made concerning upgrade options are detailed.