Do you want to publish a course? Click here

Planck 2018 results. XI. Polarized dust foregrounds

53   0   0.0 ( 0 )
 Added by Francois Boulanger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization. We use new Planck maps to characterize Galactic dust emission as a foreground to the CMB polarization. We present Planck EE, BB, and TE power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra. The TE correlation and E/B power asymmetry extend to low multipoles that were not included in earlier Planck polarization papers. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we determine the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component separation procedure required for detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified blackbody emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean spectral index for dust polarization is $beta_{rm d}^{P} = 1.53pm0.02 $. By fitting multi-frequency cross-spectra, we examine the correlation of the dust polarization maps across frequency. We find no evidence for decorrelation. If the Planck limit for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then decorrelation might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio $rsimeq0.01$ at the recombination peak.



rate research

Read More

We present 353 GHz full-sky maps of the polarization fraction $p$, angle $psi$, and dispersion of angles $S$ of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of $p$ decrease with increasing $N_H$. The uncertainty on the maximum polarization fraction, $p_mathrm{max}=22.0$% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between $p$ and $S$ is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of $p$, $psi$, and $S$ mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map $S times p$, looking for residual trends. While $p$ decreases by a factor of 3--4 between $N_H=10^{20}$ cm$^{-2}$ and $N_H=2times 10^{22}$ cm$^{-2}$, $S times p$ decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of $S times p$ with the dust temperature, even though in the diffuse ISM lines of sight with high $p$ and low $S$ tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on $N_H$ and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the $p_mathrm{max}$ observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas.
This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a tight representation of the data at 5 arc min. It shows variations of the order of 30 % compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions. An increase of the dust opacity at 353 GHz, tau_353/N_H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T_obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than 10^20 cm^-2 that could be the signature of dust in the warm ionized medium. In the diffuse ISM at high Galactic latitude, we report an anti-correlation between tau_353/N_H and T_obs while the dust specific luminosity, i.e., the total dust emission integrated over frequency (the radiance) per hydrogen atom, stays about constant. The implication is that in the diffuse high-latitude ISM tau_353 is not as reliable a tracer of dust column density as we conclude it is in molecular clouds where the correlation of tau_353 with dust extinction estimated using colour excess measurements on stars is strong. To estimate Galactic E(B-V) in extragalactic fields at high latitude we develop a new method based on the thermal dust radiance, instead of the dust optical depth, calibrated to E(B-V) using reddening measurements of quasars deduced from Sloan Digital Sky Survey data.
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution, which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Plancks three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeePs data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1 per cent of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. The results of the BeeP extension of PCCS2, which are made publicly available via the PLA, will enable the study of the thermal properties of well-defined samples of compact Galactic and extra-galactic dusty sources.
(abridged) We discuss the Galactic foreground emission between 20 and 100GHz based on observations by Planck/WMAP. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with RRL templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Halpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (~30%) of Halpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak ranging from below 20GHz to more than 50GHz. There is a strong tendency for the spinning dust component near many prominent HII regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photodissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the commander solution finds more anomalous microwave emission than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys (5-20GHz), will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck/WMAP data to make the highest S/N ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure...
Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic haze at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray haze or bubbles, indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا