No Arabic abstract
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution, which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Plancks three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeePs data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1 per cent of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. The results of the BeeP extension of PCCS2, which are made publicly available via the PLA, will enable the study of the thermal properties of well-defined samples of compact Galactic and extra-galactic dusty sources.
This paper presents the Planck Multi-frequency Catalogue of Non-thermal (i.e. synchrotron-dominated) Sources (PCNT) observed between 30 and 857 GHz by the ESA Planck mission. This catalogue was constructed by selecting objects detected in the full mission all-sky temperature maps at 30 and 143 GHz, with a signal-to-noise ratio (S/N)>3 in at least one of the two channels after filtering with a particular Mexican hat wavelet. As a result, 29400 source candidates were selected. Then, a multi-frequency analysis was performed using the Matrix Filters methodology at the position of these objects, and flux densities and errors were calculated for all of them in the nine Planck channels. The present catalogue is the first unbiased, full-sky catalogue of synchrotron-dominated sources published at millimetre and submillimetre wavelengths and constitutes a powerful database for statistical studies of non-thermal extragalactic sources, whose emission is dominated by the central active galactic nucleus. Together with the full multi-frequency catalogue, we also define the Bright Planck Multi-frequency Catalogue of Non-thermal Sources PCNTb, where only those objects with a S/N>4 at both 30 and 143 GHz were selected. In this catalogue 1146 compact sources are detected outside the adopted Planck GAL070 mask; thus, these sources constitute a highly reliable sample of extragalactic radio sources. We also flag the high-significance subsample PCNThs, a subset of 151 sources that are detected with S/N>4 in all nine Planck channels, 75 of which are found outside the Planck mask adopted here. The remaining 76 sources inside the Galactic mask are very likely Galactic objects.
The Second Planck Catalogue of Compact Sources is a catalogue of sources detected in single-frequency maps from the full duration of the Planck mission and supersedes previo
The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the nominal mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30--857,GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from ~33 to ~5) than previous all-sky surveys in this frequency band. By construction its reliability is >80% and more than 65% of the sources have been detected at least in two contiguous Planck channels. In this paper we present the construction and validation of the PCCS, its contents and its statistical characterization.
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > $10^3$ confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.
The data reported in Plancks Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70 GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat shallower at 44 GHz. Plancks source counts at 143 and 217 GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Plancks uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated.