Do you want to publish a course? Click here

An optimal transportation approach to the decay of correlations for non-uniformly expanding maps

165   0   0.0 ( 0 )
 Added by Benoit Kloeckner
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider the transfer operators of non-uniformly expanding maps for potentials of various regularity, and show that a specific property of potentials (flatness) implies a Ruelle-Perron-Frobenius Theorem and a decay of the transfer operator of the same speed than entailed by the constant potential. The method relies neither on Markov partitions nor on inducing, but on functional analysis and duality, through the simplest principles of optimal transportation. As an application, we notably show that for any map of the circle which is expanding outside an arbitrarily flat neutral point, the set of H{o}lder potentials exhibiting a spectral gap is dense in the uniform topology. The method applies in a variety of situation, including Pomeau-Manneville maps with regular enough potentials, or uniformly expanding maps of low regularity with their natural potential; we also recover in a united fashion variants of several previous results.



rate research

Read More

In the context of non-uniformly expanding maps, possibly with the presence of a critical set, we prove the existence of finitely many ergodic equilibrium states for hyperbolic potentials. Moreover, the equilibrium states are expanding measures. The technique consists in using an inducing scheme in a finite Markov structure with infinitely many symbols to code the dynamics to obtain an equilibrium state for the associated symbolic dynamics and then projecting it to obtain an equilibrium state for the original map.
We consider a robust class of random non-uniformly expanding local homeomorphisms and Holder continuous potentials with small variation. For each element of this class we develop the Thermodynamical Formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.
103 - Beno^it Kloeckner 2019
In this article we show how ideas, methods and results from optimal transportation can be used to study various aspects of the stationary measuresof Iterated Function Systems equipped with a probability distribution. We recover a classical existence and uniqueness result under a contraction-on-average assumption, prove generalized moment bounds from which tail estimates can be deduced, consider the convergence of the empirical measure of an associated Markov chain, and prove in many cases the Lipschitz continuity of the stationary measure when the system is perturbed, with as a consequence a linear response formula at almost every parameter of the perturbation.
245 - Na Lei , Yang Guo , Dongsheng An 2019
This work builds the connection between the regularity theory of optimal transportation map, Monge-Amp`{e}re equation and GANs, which gives a theoretic understanding of the major drawbacks of GANs: convergence difficulty and mode collapse. According to the regularity theory of Monge-Amp`{e}re equation, if the support of the target measure is disconnected or just non-convex, the optimal transportation mapping is discontinuous. General DNNs can only approximate continuous mappings. This intrinsic conflict leads to the convergence difficulty and mode collapse in GANs. We test our hypothesis that the supports of real data distribution are in general non-convex, therefore the discontinuity is unavoidable using an Autoencoder combined with discrete optimal transportation map (AE-OT framework) on the CelebA data set. The testing result is positive. Furthermore, we propose to approximate the continuous Brenier potential directly based on discrete Brenier theory to tackle mode collapse. Comparing with existing method, this method is more accurate and effective.
For a Markov map of an interval or the circle with countably many branches and finitely many neutral periodic points, we establish conditional variational formulas for the mixed multifractal spectra of Birkhoff averages of countably many observables, in terms of the Hausdorff dimension of invariant probability measures. Using our results, we are able to exhibit new fractal-geometric results for backward continued fraction expansions of real numbers, answering in particular a question of Pollicott. Moreover, we establish formulas for multi-cusp winding spectra for the Bowen-Series maps associated with finitely generated free Fuchsian groups with parabolic elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا