Do you want to publish a course? Click here

Entanglement entropy distribution in the strongly disordered one-dimensional Anderson model

42   0   0.0 ( 0 )
 Added by Richard Berkovits
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The entanglement entropy distribution of strongly disordered one dimensional spin chains, which are equivalent to spinless fermions at half-filling on a bond (hopping) disordered one-dimensional Anderson model, has been shown to exhibit very distinct features such as peaks at integer multiplications of $ln(2)$, essentially counting the number of singlets traversing the boundary. Here we show that for a canonical Anderson model with box distribution on-site disorder and repulsive nearest-neighbor interactions the entanglement entropy distribution also exhibits interesting features, albeit different than the distribution seen for the bond disordered Anderson model. The canonical Anderson model shows a broad peak at low entanglement values and one narrower peak at $ln(2)$. Density matrix renormalization group (DMRG) calculations reveal this structure and the influence of the disorder strength and the interaction strength on its shape. A modified real space renormalization group (RSRG) method was used to get a better understanding of this behavior. As might be expected the peak centered at low values of entanglement entropy has a tendency to shift to lower values as disorder is enhanced. A second peak appears around the entanglement entropy value of $ln(2)$,this peak is broadened and no additional peaks at higher integer multiplications of $ln(2)$ are seen. We attribute the differences in the distribution between the canonical model and the broad hopping disorder to the influence of the on-site disorder which breaks the symmetry across the boundary.



rate research

Read More

We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, $U_{cf}$, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, the $f$ electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value of $U_{cf}$ the $f$ electrons become again localized together with the conduction electrons. In the less than half-filled case, we observe that $U_{cf}$ causes strong correlations between the $f$ electrons in the mixed valence regime.
We study the quantum entanglement of the spin and orbital degrees of freedom in the one- dimensional Kugel-Khomskii model, which includes both gapless and gapped phases, using analytical techniques and exact diagonalization with up to 16 sites. We compute the entanglement entropy, and the entanglement spectra using a variety of partitions or cuts of the Hilbert space, including two distinct real-space cuts and a momentum-space cut. Our results show the Kugel-Khomski model possesses a number of new features not previously encountered in studies of the entanglement spectra. Notably, we find robust gaps in the entanglement spectra for both gapped and gapless phases with the orbital partition, and show these are not connected to each other. We observe the counting of the low-lying entanglement eigenvalues shows that the virtual edge picture which equates the low-energy Hamiltonian of a virtual edge, here one gapless leg of a two-leg ladder, to the low-energy entanglement Hamiltonian breaks down for this model, even though the equivalence has been shown to hold for similar cut in a large class of closely related models. In addition, we show that a momentum space cut in the gapless phase leads to qualitative differences in the entanglement spectrum when compared with the same cut in the gapless spin-1/2 Heisenberg spin chain. We emphasize the new information content in the entanglement spectra compared to the entanglement entropy, and using quantum entanglement present a refined phase diagram of the model. Using analytical arguments, exploiting various symmetries of the model, and applying arguments of adiabatic continuity from two exactly solvable points of the model, we are also able to prove several results regarding the structure of the low-lying entanglement eigenvalues.
We study the entanglement entropy(EE) of disordered one-dimensional spinless fermions with attractive interactions. With intensive numerical calculation of the EE using the density matrix renormalization group method, we find clear signatures of the transition between the localized and delocalized phase. In the delocalized phase, the fluctuations of the EE becomes minimum and independent of the system size. Meanwhile the EEs logarithmic scaling behavior is found to recover to that of a clean system. We present a general scheme of finite size scaling of the EE at the critical regime of the Anderson transition, from which we extract the critical parameters of the transition with good accuracy, including the critical exponent, critical point and a power-law divergent localization length.
We show that a one dimensional disordered conductor with correlated disorder has an extended state and a Landauer resistance that is non-zero in the limit of infinite system size in contrast to the predictions of the scaling theory of Anderson localization. The delocalization transition is not related to any underlying symmetry of the model such as particle-hole symmetry. For a wire of finite length the effect manifests as a sharp transmission resonance that narrows as the length of the wire is increased. Experimental realizations and applications are discussed including the possibility of constructing a narrow band light filter.
We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without time-reversal symmetry and allows for the possibility of topologically protected conducting channels. In the absence of protected channels, Anderson localization leads to a nonzero limiting value of the return probability at long times, which is approached as a negative power of time with an exponent depending on the symmetry class. When topologically protected channels are present (in a wire of either unitary or symplectic symmetry), the probability of return decays to zero at long time as a power law whose exponent depends on the number of protected channels. Technically, we describe the electron dynamics by the one-dimensional supersymmetric non-linear sigma model. We derive an exact identity that relates any local dynamical correlation function in a disordered wire of unitary, orthogonal, or symplectic symmetry to a certain expectation value in the random matrix ensemble of class AIII, CI, or DIII, respectively. The established exact mapping from one- to zero-dimensional sigma model is very general and can be used to compute any local observable in a disordered wire.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا