No Arabic abstract
We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without time-reversal symmetry and allows for the possibility of topologically protected conducting channels. In the absence of protected channels, Anderson localization leads to a nonzero limiting value of the return probability at long times, which is approached as a negative power of time with an exponent depending on the symmetry class. When topologically protected channels are present (in a wire of either unitary or symplectic symmetry), the probability of return decays to zero at long time as a power law whose exponent depends on the number of protected channels. Technically, we describe the electron dynamics by the one-dimensional supersymmetric non-linear sigma model. We derive an exact identity that relates any local dynamical correlation function in a disordered wire of unitary, orthogonal, or symplectic symmetry to a certain expectation value in the random matrix ensemble of class AIII, CI, or DIII, respectively. The established exact mapping from one- to zero-dimensional sigma model is very general and can be used to compute any local observable in a disordered wire.
Optomechanical arrays are a promising future platform for studies of transport, many-body dynamics, quantum control and topological effects in systems of coupled photon and phonon modes. We introduce disordered optomechanical arrays, focusing on features of Anderson localization of hybrid photon-phonon excitations. It turns out that these represent a unique disordered system, where basic parameters can be easily controlled by varying the frequency and the amplitude of an external laser field. We show that the two-species setting leads to a non-trivial frequency dependence of the localization length for intermediate laser intensities. This could serve as a convincing evidence of localization in a non-equilibrium dissipative situation.
We study transport of interacting electrons in a low-dimensional disordered system at low temperature $T$. In view of localization by disorder, the conductivity $sigma(T)$ may only be non-zero due to electron-electron scattering. For weak interactions, the weak-localization regime crosses over with lowering $T$ into a dephasing-induced power-law hopping. As $T$ is further decreased, the Anderson localization in Fock space crucially affects $sigma(T)$, inducing a transition at $T=T_c$, so that $sigma(T<T_c)=0$. The critical behavior of $sigma(T)$ above $T_c$ is $lnsigma(T)propto - (T-T_c)^{-1/2}$. The mechanism of transport in the critical regime is many-particle transitions between distant states in Fock space.
We study the properties of the normal modes of a chain of Josephson junctions in the simultaneous presence of disorder and absorption. We consider the superconducting regime of small phase fluctuations and focus on the case where the effects of disorder and absorption can be treated additively. We analyze the frequency shift and the localization length of the modes. We also calculate the distribution of the frequency-dependent impedance of the chain. The distribution is Gaussian if the localization length is long compared to the absorption length; it has a power law tail in the opposite limit.
Topology and disorder have deep connections and a rich combined influence on quantum transport. In order to probe these connections, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling of discrete momentum states of ultracold atoms. We characterize the systems topology through measurement of the mean chiral displacement of the bulk density extracted from quench dynamics. We find evidence for the topological Anderson insulator phase, in which the band structure of an otherwise trivial wire is driven topological by the presence of added disorder. In addition, we observed the robustness of topological wires to weak disorder and measured the transition to a trivial phase in the presence of strong disorder. Atomic interactions in this quantum simulation platform will enable future realizations of strongly interacting topological fluids.
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appropriately tailored disorder correlations. We predict the effect in one, two, and three dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The increase of localization with the particle energy can serve to discriminate quantum versus classical localization.