No Arabic abstract
We investigate the temperature dependence of the lower critical field $H_{c1}(T)$, the field at which vortices penetrate into the sample, of a high-quality fluorine-doped NdFeAsO single crystal under static magnetic fields $H$ parallel to the $c$-axis. The temperature dependence of the first vortex penetration field has been experimentally obtained and pronounced changes of the $H_{c1}$(T) curvature are observed, which is attributed to the multiband superconductivity. Using a two-band model with $s$-wave-like gaps, the temperature-dependence of the lower critical field $H_{c1}(T)$ can be well described. These observations clearly show that the superconducting energy gap in fluorine-doped NdFeAsO is nodeless. The values of the penetration depth at $T$ = 0,K have been determined and confirm that the pnictide superconductors obey an Uemura-style relationship between $T_{c}$ and $lambda_{ab}(0)^{-2}$
Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping.
Recently, a new family of iron-based superconductors called 12442 was discovered and the muon spin relaxation ($mu$SR) measurements on KCa$_2$Fe$_4$As$_4$F$_2$ and CsCa$_2$Fe$_4$As$_4$F$_2$ polycrystals, two members of the family, indicated that both have a nodal superconducting gap structure with $s+d$ pairing symmetry. Here we report the ultralow-temperature thermal conductivity measurements on CsCa$_2$Fe$_4$As$_4$F$_2$ single crystals ($T_c$ = 29.3 K). A negligible residual linear term $kappa_0/T$ in zero field and the field dependence of $kappa_0/T$ suggest multiple nodeless superconducting gaps in CsCa$_2$Fe$_4$As$_4$F$_2$. This gap structure is similar to CaKFe$_4$As$_4$ and moderately doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$, but contrasts to the nodal gap structure indicated by the $mu$SR measurements on CsCa$_2$Fe$_4$As$_4$F$_2$ polycrystals.
We report on measurements of the in-plane magnetic penetration depth lambda_{ab} in the infinite-layer electron-doped high-temperature cuprate superconductor Sr_0.9La_0.1CuO_2 by means of muon-spin rotation. The observed temperature and magnetic field dependences of lambda_{ab} are consistent with the presence of a substantial s-wave component in the superconducting order parameter in good agreement with the results of tunneling, specific heat, and small-angle neutron scattering experiments.
We have studied the quasiparticle excitation spectrum of the superconductor Ba8Si46 by local tunneling spectroscopy. Using high energy resolution achieved in Superconductor-Superconductor junctions we observed tunneling conductance spectra of a non-conventional shape revealing two distinct energy gaps, DeltaL = 1.3meV and DeltaS = 0.9meV. The analysis of tunneling data evidenced that DeltaL is the principal superconducting gap while DeltaS, smaller and more dispersive, is induced into an intrinsically non-superconducting band of the material by the inter-band quasiparticle scattering.
The superconducting properties of the recently discovered double Fe$_2$As$_2$ layered high-$T_c$ superconductor RbCa$_2$Fe$_4$As$_4$F$_2$ with $T_capprox$ 30~K have been investigated using magnetization, heat capacity, transverse-field (TF) and zero-field (ZF) muon-spin rotation/relaxation ($mu$SR) measurements. Our low field magnetization measurements and heat capacity (C$_p$) reveal an onset of bulk superconductivity with $T_{bf c}sim$ 30.0(4) K. Furthermore, the heat capacity exhibits a jump at $T_{bf c}$ of $Delta$C$_p$/$T_{bf c}$=94.6 (mJ/mole-K$^2$) and no clear effect of applied magnetic fields was observed on C$_p$(T) up to 9 T between 2 K and 5 K. Our analysis of the TF-$mu$SR results shows that the temperature dependence of the magnetic penetration depth is better described by a two-gap model, either isotropic $s$+$s$-wave or $s$+$d$-wave than a single gap isotropic $s$-wave or $d$-wave model for the superconducting gap. The presence of two superconducting gaps in RbCa$_2$Fe$_4$As$_4$F$_2$ suggests a multiband nature of the superconductivity, which is consistent with the multigap superconductivity observed in other Fe-based superconductors, including ACa$_2$Fe$_4$As$_4$F$_2$ (A=K and Cs). Furthermore, from our TF-$mu$SR study we have estimated an in-plane penetration depth $lambda_{mathrm{ab}}$$(0)$ =231.5(3) nm, superconducting carrier density $n_s = 7.45 times 10^{26}~ $m$^{-3}$, and carriers effective-mass $m^*$ = 2.45textit{m}$_{e}$. Our ZF $mu$SR measurements do not reveal a clear sign of time reversal symmetry breaking at $T_{bf c}$, but the temperature dependent relaxation between 150 K and 1.2 K might indicate the presence of spin-fluctuations. The results of our present study have been compared with those reported for other Fe pnictide superconductors.