Do you want to publish a course? Click here

Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

221   0   0.0 ( 0 )
 Added by Gianrico Lamura Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping.



rate research

Read More

73 - A. Adamski , C. Krellner , 2017
We investigate the temperature dependence of the lower critical field $H_{c1}(T)$, the field at which vortices penetrate into the sample, of a high-quality fluorine-doped NdFeAsO single crystal under static magnetic fields $H$ parallel to the $c$-axis. The temperature dependence of the first vortex penetration field has been experimentally obtained and pronounced changes of the $H_{c1}$(T) curvature are observed, which is attributed to the multiband superconductivity. Using a two-band model with $s$-wave-like gaps, the temperature-dependence of the lower critical field $H_{c1}(T)$ can be well described. These observations clearly show that the superconducting energy gap in fluorine-doped NdFeAsO is nodeless. The values of the penetration depth at $T$ = 0,K have been determined and confirm that the pnictide superconductors obey an Uemura-style relationship between $T_{c}$ and $lambda_{ab}(0)^{-2}$
Motivated by the discovery of superconductivity in boron-doped (B-doped) diamond, we investigate the localization and superconductivity in heavily doped semiconductors. The competition between Anderson localization and s-wave superconductivity is investigated from the microscopic point of view. The effect of microscopic inhomogeneity and the thermal fluctuation in superconductivity are taken into account using the self-consistent 1-loop-order theory with respect to superconducting fluctuation. The crossover from superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. We show that superconductor-insulator transition (SIT) accompanies the crossover. We point out an enhancement of Cooper pairing in the crossover regime. Further localization of the electron wave function gives rise to incoherent Cooper pairs and the pseudogap above T_c. A global phase diagram is drawn for host band superconductivity, impurity band superconductivity, Anderson localization, Fermi liquid state, and pseudogap state. A theoretical interpretation is proposed for superconductivity in the doped diamond, SiC, and Si.
We demonstrate that the differential conductance, $dI/dV$, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe$_{0.45}$Te$_{0.55}$, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related $C_2$-symmetry in the Fourier transformed differential conductance.
Superconductivity in LaNiPO is disrupted by small (~5%) amounts of non-stoichiometry on the lanthanum site, even though the electronic contribution to the heat capacity increases with increasing non-stoichiometry. All samples also exhibit specific heat anomalies consistent with the presence of ferromagnetic spin fluctuations (Tsf ~ 14 K). Comparison of layered nickel phosphide and nickel borocarbide superconductors reveals different structure-property correlations in the two families.
We report 75As-NMR/NQR results on new iron-arsenide compounds (La0.5-xNa0.5+x)Fe2As2. The parent compound x=0 exhibits a stripe-type antiferromagnetic (AFM) order below T_N=130 K. The measurement of nuclear spin relaxation rate at hole-doped x=+0.3 and heavily electron-doped x=-0.5 revealed that the normal-state properties are dominated by AFM spin fluctuations (AFMSFs), which are more significant at x=+0.3 than at x=-0.5. Their superconducting (SC) phases are characterized by unconventional multi-gap SC state, where the smaller SC gaps are particularly weaken in common. The experimental results indicate the close relationship between the AFMSFs and the SC from the hole-doped state to heavily electron-doped state, which shed light on a unique SC phase emerged in the heavily electron-doped regime being formally equivalent to non-SC compound Ba(Fe0.5Co0.5)Fe2As2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا