Do you want to publish a course? Click here

NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations

358   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent theoretical work has established the presence of hidden spin and orbital textures in non-magnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for $^{77}$Se, $^{125}$Te and $^{209}$Bi in Bi$_2$Se$_3$ and Bi$_2$Te$_3$. In conducting samples with current densities of $simeq 10^6, {rm A/cm}^2$, the splitting for Bi can reach $100, {rm kHz}$, which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi$_2$Se$_3$, this requires narrow wires of radius $lesssim 1, mu{rm m}$. We also discuss other potentially more promising candidate materials, such as SrRuO$_3$ and BaIr$_2$Ge$_2$, whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.



rate research

Read More

Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly-polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin-polarized electronic states can be selectively addressed by circularly-polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nature Physics 10, 387 (2014)].
We investigate the impact of mechanical strains and a perpendicular electric field on the electronic and magnetic ground-state properties of two-dimensional monolayer CrI$_3$ using density functional theory. We propose a minimal spin model Hamiltonian, consisting of symmetric isotropic exchange interactions, magnetic anisotropy energy, and Dzyaloshinskii-Moriya (DM) interactions, to capture most pertinent magnetic properties of the system. We compute the mechanical strain and electric field dependence of various spin-spin interactions. Our results show that both the amplitudes and signs of the exchange interactions can be engineered by means of strain, while the electric field affects only their amplitudes. However, strain and electric fields affect both the directions and amplitudes of the DM vectors. The amplitude of the magnetic anisotropy energy can also be substantially modified by an applied strain. We show that in comparison with an electric field, strain can be more efficiently used to manipulate the magnetic and electronic properties of the system. Notably, such systematic tuning of the spin interactions is essential for the engineering of room-temperature spintronic nanodevices.
119Sn nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T1) in SnO2 nanoparticles were measured as a function of temperature and compared with those of SnO2 bulk sample. A 15% loss of 119Sn NMR signal intensity for the nano sample compared to the bulk sample was observed. This is indicative of ferromagnetism from a small fraction of the sample. Another major finding is that the recovery of the 119Sn longitudinal nuclear magnetization in the nano sample follows a stretched exponential behavior, as opposed to that in bulk which is exponential. Further, the 119Sn 1/T1 at room temperature is found to be much higher for the nano sample than for its bulk counterpart. These results indicate the presence of magnetic fluctuations in SnO2 nanoparticles in contrast to the bulk (non-nano) which is diamagnetic. These local moments could arise from surface defects in the nanoparticles.
Methods to generate spin-polarised electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices. This is generally accepted to require breaking global structural inversion symmetry. In contrast, here we present direct evidence from spin- and angle-resolved photoemission spectroscopy for a strong spin polarisation of bulk states in the centrosymmetric transition-metal dichalcogenide WSe$_2$. We show how this arises due to a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localised, leading to enormous spin splittings up to $sim!0.5$ eV, with a spin texture that is strongly modulated in both real and momentum space. As well as providing the first experimental evidence for a recently-predicted `hidden spin polarisation in inversion-symmetric materials, our study sheds new light on a putative spin-valley coupling in transition-metal dichalcogenides, of key importance for using these compounds in proposed valleytronic devices.
High spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with a ferromagnetic layer show promise for next generation magnetic memory and logic devices. SOTs generated from the in-plane spin polarization along y-axis originated by the spin Hall and Edelstein effects can switch magnetization collinear with the spin polarization in the absence of external magnetic fields. However, an external magnetic field is required to switch the magnetization along x and z-axes via SOT generated by y-spin polarization. Here, we present that the above limitation can be circumvented by unconventional SOT in magnetron-sputtered thin film MnPd3. In addition to the conventional in-plane anti-damping-like torque due to the y-spin polarization, out-of-plane and in-plane anti-damping-like torques originating from z-spin and x-spin polarizations, respectively have been observed at room temperature. The spin torque efficiency corresponding to the y-spin polarization from MnPd3 thin films grown on thermally oxidized silicon substrate and post annealed at 400 Deg C is 0.34 - 0.44. Remarkably, we have demonstrated complete external magnetic field-free switching of perpendicular Co layer via unconventional out-of-plane anti-damping-like torque from z-spin polarization. Based on the density functional theory calculations, we determine that the observed x- and z- spin polarizations with the in-plane charge current are due to the low symmetry of the (114) oriented MnPd3 thin films. Taken together, the new material reported here provides a path to realize a practical spin channel in ultrafast magnetic memory and logic devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا