No Arabic abstract
This paper presents a convergence analysis of kernel-based quadrature rules in misspecified settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on which a quadrature rule is constructed. We provide convergence guarantees based on two different assumptions on a quadrature rule: one on quadrature weights, and the other on design points. More precisely, we show that convergence rates can be derived (i) if the sum of absolute weights remains constant (or does not increase quickly), or (ii) if the minimum distance between design points does not decrease very quickly. As a consequence of the latter result, we derive a rate of convergence for Bayesian quadrature in misspecified settings. We reveal a condition on design points to make Bayesian quadrature robust to misspecification, and show that, under this condition, it may adaptively achieve the optimal rate of convergence in the Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand), under a slightly stronger regularity condition on the integrand.
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the mollified solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient finite element assembly.
We propose an accurate algorithm for a novel sum-of-exponentials (SOE) approximation of kernel functions, and develop a fast algorithm for convolution quadrature based on the SOE, which allows an order $N$ calculation for $N$ time steps of approximating a continuous temporal convolution integral. The SOE method is constructed by a combination of the de la Vallee-Poussin sums for a semi-analytical exponential expansion of a general kernel, and a model reduction technique for the minimization of the number of exponentials under given error tolerance. We employ the SOE expansion for the finite part of the splitting convolution kernel such that the convolution integral can be solved as a system of ordinary differential equations due to the exponential kernels. The remaining part is explicitly approximated by employing the generalized Taylor expansion. The significant features of our algorithm are that the SOE method is efficient and accurate, and works for general kernels with controllable upperbound of positive exponents. We provide numerical analysis for the SOE-based convolution quadrature. Numerical results on different kernels, the convolution integral and integral equations demonstrate attractive performance of both accuracy and efficiency of the proposed method.
Numerical integration is encountered in all fields of numerical analysis and the engineering sciences. By now, various efficient and accurate quadrature rules are known; for instance, Gauss-type quadrature rules. In many applications, however, it might be impractical---if not even impossible---to obtain data to fit known quadrature rules. Often, experimental measurements are performed at equidistant or even scattered points in space or time. In this work, we propose stable high order quadrature rules for experimental data, which can accurately handle general weight functions.
Some Gauss-type quadrature rules over [0, 1], which involve values and/or the derivative of the integrand at 0 and/or 1, are investigated
Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.